EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密砂岩逆向渗吸作用距离实验研究

齐松超 于海洋 杨海烽 汪洋 杨正明

齐松超, 于海洋, 杨海烽, 汪洋, 杨正明. 致密砂岩逆向渗吸作用距离实验研究. 力学学报, 2021, 53(9): 2603-2611 doi: 10.6052/0459-1879-21-298
引用本文: 齐松超, 于海洋, 杨海烽, 汪洋, 杨正明. 致密砂岩逆向渗吸作用距离实验研究. 力学学报, 2021, 53(9): 2603-2611 doi: 10.6052/0459-1879-21-298
Qi Songchao, Yu Haiyang, Yang Haifeng, Wang Yang, Yang Zhengming. Experimental research on quantification of countercurrent imbibition distance for tight sandstone. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2603-2611 doi: 10.6052/0459-1879-21-298
Citation: Qi Songchao, Yu Haiyang, Yang Haifeng, Wang Yang, Yang Zhengming. Experimental research on quantification of countercurrent imbibition distance for tight sandstone. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2603-2611 doi: 10.6052/0459-1879-21-298

致密砂岩逆向渗吸作用距离实验研究

doi: 10.6052/0459-1879-21-298
基金项目: 国家自然科学基金(52074317)和中国石油大学(北京)科研基金(2462020YXZZ028)资助项目
详细信息
    作者简介:

    于海洋, 教授, 主要研究方向: 油气田开发渗流理论与系统工程. E-mail: haiyangyu.cup@139.com

  • 中图分类号: TE348

EXPERIMENTAL RESEARCH ON QUANTIFICATION OF COUNTERCURRENT IMBIBITION DISTANCE FOR TIGHT SANDSTONE

  • 摘要: 中国致密油储量丰富, 但多数致密储层波及效率低, 衰竭开发效果较差. 逆向渗吸是致密油藏注水开发过程中的一种重要的提高采收率途径, 目前许多学者主要针对致密油藏渗吸采收率及其影响因素开展研究, 而对于渗吸作用距离(表征致密油藏渗吸作用范围)研究较少. 本文采用CT在线扫描装置建立了致密岩心逆向渗吸作用距离量化方法, 明确了逆向渗吸的作用范围, 进一步研究了流体压力、含水饱和度、岩心渗透率和表面活性剂对逆向渗吸作用距离的影响, 阐明了逆向渗吸作用距离与渗吸采收率的关系, 为提高致密油藏采收率提供指导. 研究结果表明, 渗透率为0.3 mD的致密岩心逆向渗吸作用距离尺度仅为1.25 ~ 1.625 cm; 5 MPa条件下渗透率为0.302 mD的岩心逆向渗吸作用距离为1.375 cm. 在本实验条件下, 流体压力和初始含水饱和度对致密岩心逆向渗吸作用距离的影响较小, 而渗透率和表面活性剂对致密岩心逆向渗吸作用距离的影响显著, 渗透率为0.784 mD的岩心逆向渗吸作用距离相较于渗透率为0.302 mD的岩心提高2.63倍. 逆向渗吸作用距离是渗吸采收率表征的重要参数, 决定了逆向渗吸作用的波及范围.

     

  • 图  1  岩心的核磁共振实验结果

    Figure  1.  Results of NMR experiment of cores

    图  2  地面脱气原油组分含量

    Figure  2.  Component content of surface degassed crude oil

    图  3  逆向渗吸作用距离量化实验装置图

    Figure  3.  Schematic diagram of countercurrent imbibition distance quantification experiment

    图  4  在5 MPa条件下逆向渗吸作用距离实验结果(A-1岩心0.302 mD)

    Figure  4.  Experimental results of CID under 5 MPa condition (A-1 core with 0.302 mD)

    图  5  20 MPa下A-2岩心逆向渗吸作用距离实验结果

    Figure  5.  Experimental results of CID for A-2 core under 20 MPa condition

    图  6  初始含水饱和度为31.66%的A-3岩心的逆向渗吸作用距离实验结果

    Figure  6.  Experimental results of CID for A-3 core with initial water saturation of 31.66%

    图  7  A-4岩心逆向渗吸作用距离实验结果

    Figure  7.  Experimental results of CID for A-4 core

    图  8  表面活性剂逆向渗吸作用距离实验结果

    Figure  8.  Experimental results of CID by using surfactant

    图  9  岩心润湿性测试结果

    Figure  9.  Core wettability test results

    图  10  逆向渗吸采收率分析图

    Figure  10.  Diagram of countercurrent imbibition recovery

    图  11  不同岩心的逆向渗吸采收率结果

    Figure  11.  Results of countercurrent imbibition recovery for different cores

    表  1  实验岩心基础数据

    Table  1.   Basic data of experimental core

    SampleLength/cmPermeability/mDPorosity/%
    A-15.0770.3028.96
    A-25.0540.3058.74
    A-35.0760.3038.82
    A-45.0690.78411.03
    A-55.0720.3089.01
    下载: 导出CSV

    表  2  地层水组分及性质

    Table  2.   Composition and properties of formation water

    Cation/(mg·L−1)Anion/(mg·L−1)
    K+ + Na+Ca2+Mg2+ClSO42−HCO3
    16207252827029703734337
    下载: 导出CSV

    表  3  逆向渗吸作用距离影响因素实验方案

    Table  3.   Experimental schemes for influencing factors of countercurrent imbibition distance (CID)

    SamplePermeability/mDPressure/MPaInfluencing factor
    A-10.3025
    A-20.30520fluid pressure
    A-30.3035saturation
    A-40.7845permeability
    A-50.3085surfactant
    下载: 导出CSV

    表  4  不同流体压力下逆向渗吸作用距离实验结果

    Table  4.   Experimental results of countercurrent imbibition distance under different fluid pressures

    SampleFluid pressure/MPaWater saturation at inlet/%CID/cm
    A-1515.161.375
    A-22017.921.625
    下载: 导出CSV
  • [1] 袁士义, 王强, 李军诗等. 注气提高采收率技术进展及前景展望. 石油学报, 2020, 41(12): 1623-1632 (Yuan Shiyi, Wang Qiang, Li Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection. Acta Petrolei Sincia, 2020, 41(12): 1623-1632 (in Chinese) doi: 10.7623/syxb202012014
    [2] 康毅力, 田键, 罗平亚等. 致密油藏提高采收率技术瓶颈与发展策略. 石油学报, 2020, 41(4): 467-477 (Kang Yili, Tian Jian, Luo Pingya, et al. Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs. Acta Petrolei Sincia, 2020, 41(4): 467-477 (in Chinese)
    [3] 蔡建超, 夏宇轩, 徐赛等. 含水合物沉积物多相渗流特性研究进展. 力学学报, 2020, 52(1): 208-223 (Cai Jianchao, Xia Yuxuan, Xu Sai, et al. Advances in multiphase seepage characteristics of natural gas hydrate sediments. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223 (in Chinese)
    [4] 邹才能, 张国生, 杨智等. 非常规油气概念、特征、潜力及技术−兼论非常规油气地质学. 石油勘探与开发, 2013, 40(4): 385-399+454 (Zou Caineng, Zhang Guosheng, Yang Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: on unconventional petroleum. Petroleum Exploration and Development, 2013, 40(4): 385-399+454 (in Chinese)
    [5] 周庆凡, 金之钧, 杨国丰等. 美国页岩油勘探开发现状与前景展望. 石油与天然气地质, 2019, 40(3): 469-477 (Zhou Qingfan, Jin Zhijun, Yang Guofeng, et al. Shale oil exploration and production in the U.S. Status and outlook. Oil &Gas Geology, 2019, 40(3): 469-477 (in Chinese)
    [6] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景. 石油勘探与开发, 2012, 39(2): 129-136 (Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development, 2012, 39(2): 129-136 (in Chinese)
    [7] 林森虎, 邹才能, 袁选俊等. 美国致密油开发现状及启示. 岩性油气藏, 2011, 23(4): 25-30+64 (Lin Senhu, Zou Caineng, Yuan Xuanjun, et al. Status quo of tight oil exploitation in the United States and its implication. Lithologic Reservoirs, 2011, 23(4): 25-30+64 (in Chinese) doi: 10.3969/j.issn.1673-8926.2011.04.005
    [8] 朱维耀, 岳明, 刘昀枫等. 中国致密油藏开发理论研究进展. 工程科学学报, 2019, 41(9): 1103-1114 (Zhu Weiyao, Yue Ming, Liu Yunfeng, et al. Research progress on tight oil exploration in China. Chinese Journal of Engineering, 2019, 41(9): 1103-1114 (in Chinese)
    [9] 李宪文, 樊凤玲, 杨华等. 鄂尔多斯盆地低压致密油藏不同开发方式下的水平井体积压裂实践. 钻采工艺, 2016, 39(3): 34-36+128-129 (Li Xianwen, Fan Fengling, Yang Hua, et al. Volumetric fracturing technology of low-pressure tight oil reservoirs horizontal wells under different development conditions in ordos basin. Drilling & Production Technology, 2016, 39(3): 34-36+128-129 (in Chinese) doi: 10.3969/J.ISSN.1006-768X.2016.03.11
    [10] 孙龙德, 邹才能, 贾爱林等. 中国致密油气发展特征与方向. 石油勘探与开发, 2019, 46(6): 1015-1026 (Sun Longde, Zou Caineng, Jia Ailin, et al. Characteristics and direction of tight oil and gas development in China. Petroleum Exploration and Development, 2019, 46(6): 1015-1026 (in Chinese)
    [11] 樊建明, 王冲, 屈雪峰等. 鄂尔多斯盆地致密油水平井注水吞吐开发实践−以延长组长7油层组为例. 石油学报, 2019, 40(6): 706-715 (Fan Jianming, Wang Chong, Qu Xuefeng, et al. Development and practice of water flooding huff-puff in tight oil horizontal well, Ordos Basin: a case study of Yanchang formation Chang 7 oil layer. Acta Petrolei Sinica, 2019, 40(6): 706-715 (in Chinese)
    [12] 刘新, 安飞, 陈庆海等. 提高致密油藏原油采收率技术分析−以巴肯组致密油为例. 大庆石油地质与开发, 2016, 35(6): 164-169 (Liu Xin, An Fei, Chen Qinghai, et al. Analyses of the EOR techniques for tight oil reservoirs: Taking Bakken-formation as an example. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(6): 164-169 (in Chinese) doi: 10.3969/J.ISSN.1000-3754.2016.06.031
    [13] 于海洋, 杨中林, 刘俊辉等. 致密油藏碳化水驱提高采收率方法. 大庆石油地质与开发, 2019, 38(2): 166-174 (Yu Haiyang, Yang Zhonglin, Liu Junhui, et al. Enhanced oil recovery by carbonated water flooding in tight reservoirs. Petroleum Geology &Oilfield Development in Daqing, 2019, 38(2): 166-174 (in Chinese)
    [14] 蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展. 力学进展, 2012, 42(6): 735-754 (Cai Jianchao, Yu Boge. Advances in studies of spontaneous imbibition in porous media. Advances in Mechanics, 2012, 42(6): 735-754 (in Chinese)
    [15] Zeng FH, Zhang Q, Guo JC, et al. Capillary imbibition of confined water in nanopores. Capillarity, 2020, 3(1): 8-15 doi: 10.26804/capi.2020.01.02
    [16] Meng QB, Cai JC. Recent advances in spontaneous imbibition with different boundary conditions. Capillarity, 2018, 1(3): 19-26 doi: 10.26804/capi.2018.03.01
    [17] Handy LL. Determination of effective capillary pressures for porous media from imbibition data. Transactions of the AIME, 1960, 219(1): 75-80 doi: 10.2118/1361-G
    [18] 刘文超, 姚军, 陈掌星等. 低渗透多孔介质渗流动边界模型的解析与数值解. 力学学报, 2015, 47(4): 605-612 (Liu Wenchao, Yao Jun, Chen Zhangxing, et al. Analytical and numerical solutions of boundary model for low permeability porous media. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 605-612 (in Chinese)
    [19] Ghasemi F, Ghaedi M, Escrochi M. A new scaling equation for imbibition process in naturally fractured gas reservoirs. Advances in Geo-Energy Research, 2020, 4(1): 99-106 doi: 10.26804/ager.2020.01.09
    [20] Cai JC, Jin TX, Kou JS, et al. Lucas–Washburn equation-based modeling of capillary-driven flow in porous systems. Langmuir, 2021, 37(5): 1623-1636 doi: 10.1021/acs.langmuir.0c03134
    [21] 王付勇, 曾繁超, 赵久玉. 低渗透/致密油藏驱替-渗吸数学模型及其应用. 石油学报, 2020, 41(11): 1396-1405 (Wang Fuyong, Zeng Fangchao, Zhao Jiuyu. A mathematical model of displacement and imbibition of low-permeability/tight reservoirs and its application. Acta Petrolei Sincia, 2020, 41(11): 1396-1405 (in Chinese) doi: 10.7623/syxb202011009
    [22] 周凤军, 陈文明. 低渗透岩心渗吸实验研究. 复杂油气藏, 2009, 2(1): 54-56 (Zhou Fengjun, Chen Wenming. Study on spontaneous imbibition experiment of low permeability core. Complex Hydrocarbon Reservoirs, 2009, 2(1): 54-56 (in Chinese)
    [23] 江昀, 许国庆, 石阳等. 致密岩心带压渗吸规律实验研究. 石油实验地质, 2021, 43(1): 144-153 (Jiang Yun, Xu Guoqing, Shi Yang, et al. Forced imbibition in tight oil sandstone cores. Petroleum Geology &Experiment, 2021, 43(1): 144-153 (in Chinese)
    [24] 党海龙, 王小锋, 崔鹏兴等. 基于核磁共振技术的低渗透致密砂岩油藏渗吸驱油特征研究. 地球物理学进展, 2020, 35(5): 1759-1769 (Dang Hailong, Wang Xiaofeng, Cui Pengxing, et al. Research on the characteristics of spontaneous imbibition oil displacement with the low permeability tight-sandstone oil reservoir using the nuclear magnetic resonance (NMR) technology. Progress in Geophysics, 2020, 35(5): 1759-1769 (in Chinese)
    [25] 薛华庆, 胥蕊娜, 姜培学等. 岩石微观结构CT扫描表征技术研究. 力学学报, 2015, 47(6): 1073-1078 (Xue Huaqing, Xu Ruina, Jiang Peixue, et al. Study on ct scanning characterization technology of rock microstructure. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1073-1078 (in Chinese)
    [26] 谷潇雨, 蒲春生, 黄海等. 渗透率对致密砂岩储集层渗吸采油的微观影响机制. 石油勘探与开发, 2017, 44(6): 948-954 (Gu Xiaoyu, Pu Chunsheng, Huang Hai, et al. Micro-influencing mechanism of permeability on spontaneous imbibition recovery for tight sandstone reservoirs. Petroleum Exploration and Development, 2017, 44(6): 948-954 (in Chinese) doi: 10.1016/S1876-3804(17)30107-6
    [27] Lyu CH, Ning ZF, Wang Q, et al. Application of NMR T2 to pore size distribution and movable fluid distribution in tight sandstones. Energy & Fuels, 2018, 32: 1395-1405
    [28] 董大鹏, 李斌会, 苑盛旺等. 基于核磁共振测试的低渗亲水岩心静态渗吸特征. 大庆石油地质与开发, 2021, 40(2): 60-65 (Dong Dapeng, Li Binhui, Yuan Shengwang, et al. Spontaneous imbibition characteristics of the low-permeability water-wet core based on the NMR. Petroleum Geology &Oilfield Development in Daqing, 2021, 40(2): 60-65 (in Chinese)
    [29] Gao LH, Yang ZM, Shi Y. Experimental study on spontaneous imbibition characteristics of tight rocks. Advances in Geo-Energy Research, 2018, 2(3): 292-304 doi: 10.26804/ager.2018.03.07
    [30] Ghandi E, Parsaei R, Riazi M. Enhancing the spontaneous imbibition rate of water in oil-wet dolomite rocks through boosting a wettability alteration process using carbonated smart brines. Petroleum Science, 2019, 16: 1361-1373 doi: 10.1007/s12182-019-0355-1
    [31] Wang XZ, Peng XL, Zhang SJ, et al. Characteristics of oil distributions in forced and spontaneous imbibition of tight oil reservoir. Fuel, 2018, 224: 280-288 doi: 10.1016/j.fuel.2018.03.104
    [32] Vilhena O, Farzaneh A, Pola J, et al. New insights into spontaneous imbibition processes in unfractured and fractured carbonate cores with stress-induced apertures. SPE Reservoir Evaluation & Engineering, 2020, 23(2): 722-740
    [33] Meng QB, Liu HQ, Wang J. Effect of viscosity on oil production by cocurrent and countercurrent imbibition from cores with two ends open. SPE Reservoir Evaluation & Engineering, 2017, 20(2): 251-259
    [34] Liu JR, Sheng JJ. Investigation of countercurrent imbibition in oil-wet tight cores using NMR technology. SPE Journal, 2020, 25(5): 2601-2614 doi: 10.2118/201099-PA
    [35] Mirzaei M, Dicarlo DA, Pope GA. Visualization and analysis of surfactant imbibition into oil-wet fractured cores. SPE Journal, 2016, 21(1): 101-111 doi: 10.2118/166129-PA
    [36] 杨正明, 刘学伟, 李海波等. 致密储集层渗吸影响因素分析与渗吸作用效果评价. 石油勘探与开发, 2019, 46(4): 739-745 (Yang Zhengming, Liu Xuewei, Li Haibo, et al. Analysis on the influencing factors of imbibition and the effect evaluation of imbibition in tight reservoirs. Petroleum Exploration and Development, 2019, 46(4): 739-745 (in Chinese) doi: 10.1016/S1876-3804(19)60231-4
    [37] Hun LD, Zhang SC, Wang F, et al. Experimental investigation on imbibition-front progression in shale based on nuclear magnetic resonance. Energy & Fuels, 2016, 30(11): 9097-9105
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  115
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-20
  • 录用日期:  2021-08-01
  • 网络出版日期:  2021-08-01
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回