PORE-SCALE SIMULATION OF MULTIPHASE FLOW CONSIDERING THERMO-HYDRO-MECHANICAL COUPLING EFFECT IN POROUS MEDIA
-
摘要: 为了研究深层油气资源在岩石多孔介质内的运移过程, 使用一种基于Darcy-Brinkman-Biot的流固耦合数值方法, 结合传热模型, 完成了Duhamel-Neumann热弹性应力的计算, 实现了在孔隙模拟多孔介质内的考虑热流固耦合作用的两相流动过程. 模型通过求解Navier-Stokes方程完成对孔隙空间内多相流体的计算, 通过求解Darcy方程完成流体在岩石固体颗粒内的计算, 二者通过以动能方式耦合的形式, 计算出岩石固体颗粒质点的位移, 从而实现了流固耦合计算. 在此基础上, 加入传热模型考虑温度场对两相渗流过程的影响. 温度场通过以产生热弹性应力的形式作用于岩石固体颗粒, 总体上实现热流固耦合过程. 基于数值模型, 模拟油水两相流体在二维多孔介质模型内受热流固耦合作用的流动过程. 研究结果表明: 热应力与流固耦合作用产生的应力方向相反, 使得总应力比单独考虑流固耦合作用下的应力小; 温度的增加使得模型孔隙度增加, 但当注入温差达到150 K后, 孔隙度不再有明显增加; 温度的增加使得水相的相对渗流能力增加, 等渗点左移.Abstract: Researches on the thermo-hydro-mechanical (THM) coupling effect in porous media from the perspective of pore-scale is of great significance for the study of enhanced oil recovery, nuclear storage, and geological sequestration of CO2. In order to study the migration of oil resources in porous media in the deep oil reservoir, we used a combined method to realize the THM process occurring in porous media. The Darcy-Brinkman-Biot method was applied to simulate the THM process and the calculation of thermal stress was achieved by adding the Duhamel-Neumann thermoelastic stress to the model. A water-oil two-phase flow process considering THM coupling effect in porous media was then realized. The model has simulated flow of multiphase fluid in the pore space by solving the Navier-Stokes equations and calculated flow of the fluid in the rock matrix by solving the Darcy equation. The two processes were coupled with a series of momentum exchange equations to obtain the displacement of solid particles, thus realizing the fluid-solid coupling effect. On this basis, a heat transfer model was added to numerical model to consider the influence of temperature field on the two-phase flow process. Temperature field acts on the matrix in the form of thermoelastic stress to realize the THM coupling process. Based on the model, we simulated the flow process of water-oil two-phase fluid in a two-dimensional porous media model. The results have shown that: (1) the direction of thermal stress was opposite to that generated by fluid-structure coupling effect, which made the total stress smaller than that under the fluid-structure coupling effect; (2) the porosity of the model increased with the increase of temperature, however, when the injection temperature difference reached 150 K, the porosity no longer increased significantly; (3) with the increase of temperature, the relative permeability of the water phase increased and the equal-permeability point shifted to the left.
-
Key words:
- THM coupling /
- multiphase flow /
- porous media /
- volume averaging method /
- FVM
-
表 1 模拟参数设置
Table 1. Simulation parameters
Phase Parameter Value fluids water density$\;{{\rm{\rho }}_{\text{w}}}$/(kg·m-3) 1000 viscosity$\;{{\rm{\mu }}_{\text{w}}}$/(Pa·s) 0.001 contact angle ${{\rm{\theta }}_{\text{w}}}$/(°) 45 oil density$\;{{\rm{\rho }}_{\text{o}}}$/(kg·m-3) 1000 viscosity $\;{{\rm{\mu }}_{\text{o}}}$/(Pa·s) 0.001 surface tension ${{\rm{\sigma }}_{{\text{wo}}}}$/(N·m-1) 0.077 rock density ${{\rm{\rho }}_{\text{s}}}$/(kg·m-3) 2500 Poisson ratio $\;{\rm{\nu }}$ 0.3 Young’s module E /(GPa) 50 specific heat capacity c /(J·K·kg-1) 780 thermal conductivity K/(W·m-1·K-1) 2 thermal diffusivity ${{\rm{\alpha }}_{\text{t}}}$/K-1 1×10−6 -
[1] 孙龙德, 邹才能, 朱如凯等. 中国深层油气形成, 分布与潜力分析. 石油勘探与开发, 2013, 40(6): 641-649 (Sun Longde, Zou Caineng, Zhu Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China. Petroleum Exploration and Development, 2013, 40(6): 641-649 (in Chinese) [2] 姚军, 黄朝琴, 刘文政等. 深层油气藏开发中的关键力学问题. 中国科学: 物理学 力学 天文学, 2018, 48(4): 5-31 (Yao Jun, Huang Zhaoqin, Liu Wenzheng, et al. Key mechanical problems in the development of deep oil and gas reservoirs. Scientia Sinica Physica,Mechanica &Astronomica, 2018, 48(4): 5-31 (in Chinese) [3] 姚军, 孙海, 李爱芬等. 现代油气渗流力学体系及其发展趋势. 科学通报, 2018, 63(4): 425-451 (Yao Jun, Sun Hai, Li Aifen, et al. Modern system of multiphase flow in porous media and its development trend. Chinese Science Bulletin, 2018, 63(4): 425-451 (in Chinese) doi: 10.1360/N972017-00161 [4] Yang YF, Cai SB, Yao J, et al. Pore-scale simulation of remaining oil distribution in 3D porous media affected by wettability and capillarity based on Volume of Fluid method. International Journal of Multiphase Flow, 2021, 143: 103746 doi: 10.1016/j.ijmultiphaseflow.2021.103746 [5] 李淑霞, 郭尚平, 陈月明等. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议. 力学学报, 2020, 52(3): 828-842 (Li Shuxia, Guo Shangping, Chen Yueming, et al. Advances and recommendations for multi-field characteristics and coupling seepage in natural gas hydrate development. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 828-842 (in Chinese) [6] Yang YF, Li YW, Yao J, et al. Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: impact of homogeneous versus fractured versus vuggy pore structure. Water Resources Research, 2020, 56(4): e2019WR026112 [7] Terzaghi K. Theory of consolidation. in: Theoretical Soil Mechanics, Terzaghi K (Ed.), 1943: 265-296 [8] 李锡夔, 刘泽佳, 严颖. 饱和多孔介质中动力渗流耦合分析的混合有限元法和有限应变下应变局部化分析. 力学学报, 2003, 35(6): 668-676 (Li Xikui, Liu Zejia, Yan Ying. Mixed finite element method for saturated porous media and application to strain localization at finite strain. Acta Mechanica Sinica, 2003, 35(6): 668-676 (in Chinese) doi: 10.3321/j.issn:0459-1879.2003.06.004 [9] 刘泽佳, 李锡夔. 非饱和多孔介质中热-渗流-力学耦合的混合元法. 力学学报, 2006, 38(2): 170-175 (Liu Zejia, Li Xikui. Mixed finite element method for coupled thermo-hydro-mechanical analysis in unsaturated porous media. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 170-175 (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.02.004 [10] 宋睿. 基于微尺度重建模型的岩石热—流—固耦合细观机理研究. [博士论文]. 成都: 西南石油大学, 2016(Song Rui. Research on micro thermal-hydro-mechanical coupling mechanism based on pore scale model of rock. [PhD Thesis]. Chengdu: Southwest Petroleum University, 2016 (in Chinese)) [11] Song R, Cui MM, Liu JJ, et al. A pore-scale simulation on thermal-hydromechanical coupling mechanism of rock. Geofluids, 2017, 2017: 1-12 [12] Wu CQ, Xu HJ, Zhao CY. A new fractal model on fluid flow/heat/mass transport in complex porous structures. International Journal of Heat and Mass Transfer, 2020, 162: 120292 doi: 10.1016/j.ijheatmasstransfer.2020.120292 [13] 邓佳, 朱维耀, 刘锦霞等. 考虑应力敏感性的页岩气产能预测模型. 天然气地球科学, 2013, 24(3): 456-460 (Deng Jia, Zhu Weiyao, Liu Jinxia, et al. A new method of predicting gas wells' productivity of fractured horizontal well of low-permeability tight gas reservoir. Natural Gas Geoscience, 2013, 24(3): 456-460 (in Chinese) [14] 王沫然, 王梓岩. 地下深层岩石微纳米孔隙内气体渗流的多尺度模拟与分析. 地球科学, 2018, 43(5): 1792-1816 (Wang Moran, Wang Ziyan. Multiscale simulation and analysis for gas flow in deep-seated micronano pore. Earth Science, 2018, 43(5): 1792-1816 (in Chinese) [15] 樊冬艳, 孙海, 姚军等. 考虑热流固耦合干热岩储层热提取解析模型. 中国石油大学学报(自然科学版), 2018, 42(6): 106-113 (Fan Dongyan, Sun Hai, Yao Jun, et al. An analytical thermo-hydraulic-mechanical coupled model for heat extraction from hot-dry rock reservoirs. Journal of China University of Petroleum, 2018, 42(6): 106-113 (in Chinese) [16] 孙致学, 徐轶, 吕抒桓等. 增强型地热系统热流固耦合模型及数值模拟. 中国石油大学学报(自然科学版), 2016, 40(6): 109-117 (Sun Zhixue, Xu Yi, Lü Shuhuan, et al. A thermo-hydro-mechanical coupling model for numerical simulation of enhanced geothermal systems. Journal of China University of Petroleum (Natural Science) , 2016, 40(6): 109-117 (in Chinese) [17] 郭颖, 李文杰, 马建军等. 饱和多孔黏弹地基热-水-力耦合动力响应分析. 力学学报, 2021, 53(4): 1081-1092 (Guo Ying, Li Wenjie, Ma Jianjun, et al. Dynamic coupled thermo-hydro-mechanical problem for saturated porous viscoelastic foundation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1081-1092 (in Chinese) [18] Brinkman HC. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion, 1949, 1(1): 27 doi: 10.1007/BF02120313 [19] Soulaine C, Creux P, Tchelepi HA. Micro-continuum framework for pore-scale multiphase fluid transport in shale formations. Transport in Porous Media, 2019, 127(1): 85-112 doi: 10.1007/s11242-018-1181-4 [20] Carrillo FJ, Bourg IC. Modeling multiphase flow within and around deformable porous materials: a Darcy-Brinkman-Biot approach. Water Resources Research, 2021, 57(2): e2020WR028734 [21] Carrillo FJ, Bourg IC, Soulaine C. Multiphase flow modeling in multiscale porous media: an open-source micro-continuum approach. Journal of Computational Physics: X, 2020, 8: 100073 doi: 10.1016/j.jcpx.2020.100073 [22] Kovalenko AD. Thermoelasticity: Basic Theory and Applications. Wolters-Noordhoff, 1969 [23] Whitaker S. The Method of Volume Averaging. Springer Science & Business Media, 2013 [24] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201-225 doi: 10.1016/0021-9991(81)90145-5 [25] Carrillo FJ, Bourg IC. A Darcy‐Brinkman‐Biot approach to modeling the hydrology and mechanics of porous media containing macropores and deformable microporous regions. Water Resources Research, 2019, 55(10): 8096-8121 doi: 10.1029/2019WR024712 [26] Prodanovic M, Esteva M, Hanlon M. Digital rocks portal. www.digitalrocksportal.org. 2015 [27] Maqsood A, Kamran K. Thermophysical properties of porous sandstones: measurements and comparative study of some representative thermal conductivity models. International Journal of Thermophysics, 2005, 26(5): 1617-1632 doi: 10.1007/s10765-005-8108-3 [28] 雷晓东, 胡圣标, 李娟等. 北京地区基岩地层热物性参数特征. 地球物理学进展, 2018, 33(5): 1814-1823 (Lei Xiaodong, Hu Shengbiao, Li Juan, et al. Thermal properties analysis of bedrock in Beijing. Progress in Geophysics, 2018, 33(5): 1814-1823 (in Chinese) [29] OpenFOAM. The open source CFD toolbox. http://www.openfoam.org. 2010 [30] Jasak H, Weller HG. Application of the finite volume method and unstructured meshes to linear elasticity. International Journal for Numerical Methods in Engineering, 2000, 48(2): 267-287 doi: 10.1002/(SICI)1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q [31] van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980, 44(5): 892-898 doi: 10.2136/sssaj1980.03615995004400050002x [32] Oak MJ. Three-phase relative permeability of water-wet Berea//Proceedings of the SPE/DOE Enhanced Oil Recovery Symposium, 1990 [33] Sengun N. Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arabian Journal of Geosciences, 2014, 7(12): 5543-5551 doi: 10.1007/s12517-013-1177-x [34] Zhang F, Zhao JJ, Hu DW, et al. Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mechanics and Rock Engineering, 2018, 51(3): 677-694 doi: 10.1007/s00603-017-1350-8 [35] Esmaeili S, Sarma H, Harding T, et al. Two-phase bitumen/water relative permeability at different temperatures and SAGD pressure: experimental study. Fuel, 2020, 276: 118014 doi: 10.1016/j.fuel.2020.118014 [36] Esmaeili S, Sarma H, Harding T, et al. Experimental study of the effect of solvent addition and temperature on two-phase bitumen/water relative permeability. SPE Reservoir Evaluation & Engineering, 2020, 23(4): 1381-1402 -