EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩储层纳微米孔隙CO2/CH4吸附及驱替特性研究进展

邓佳 吕子健 张奇 宋付权 李久江 赵广杰

邓佳, 吕子健, 张奇, 宋付权, 李久江, 赵广杰. 页岩储层纳微米孔隙CO2/CH4吸附及驱替特性研究进展. 力学学报, 2021, 53(10): 2880-2890 doi: 10.6052/0459-1879-21-292
引用本文: 邓佳, 吕子健, 张奇, 宋付权, 李久江, 赵广杰. 页岩储层纳微米孔隙CO2/CH4吸附及驱替特性研究进展. 力学学报, 2021, 53(10): 2880-2890 doi: 10.6052/0459-1879-21-292
Deng Jia, Lü Zijian, Zhang Qi, Song Fuquan, Li Jiujiang, Zhao Guangjie. Review on CO2/CH4 adsorption and displacement characteristics of micro-nano pores in shale reservoir. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2880-2890 doi: 10.6052/0459-1879-21-292
Citation: Deng Jia, Lü Zijian, Zhang Qi, Song Fuquan, Li Jiujiang, Zhao Guangjie. Review on CO2/CH4 adsorption and displacement characteristics of micro-nano pores in shale reservoir. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2880-2890 doi: 10.6052/0459-1879-21-292

页岩储层纳微米孔隙CO2/CH4吸附及驱替特性研究进展

doi: 10.6052/0459-1879-21-292
基金项目: 国家自然科学基金(11602227), 国家重大科技专项(2017ZX05072005)和河南省重点研发与推广专项(182102310891)资助项目
详细信息
    作者简介:

    邓佳, 讲师, 主要研究方向: 流体力学、渗流力学. E-mail: dengjialucky@zzu.edu.cn

    宋付权, 教授, 主要研究方向: 海洋油气开发技术、非常规油气藏渗流机理和微流动理论等. E-mail: songfuquan@zjou.edu.cn

  • 中图分类号: TB126

REVIEW ON CO2/CH4 ADSORPTION AND DISPLACEMENT CHARACTERISTICS OF MICRO-NANO PORES IN SHALE RESERVOIR

  • 摘要: 利用CO2开采页岩气不仅能够提高页岩气采收率, 还能够节省水资源并且对CO2进行地质封存, 有助于实现页岩气开采过程的碳中和. 富有机质页岩储层纳微米孔隙中气体运移机制不同于常规储层, CO2在储层中具有超临界特性, 致使开采机理复杂, 无法得到CO2开采页岩气微观机理的准确认识, 所以研究CH4, CO2及其二元混合物在页岩储层纳微米孔隙中的吸附及驱替特性对准确评估和高效开采页岩气至关重要. 本文从实验、理论以及模拟方面对页岩储层纳微米孔隙中CH4的吸附特性、CO2/CH4二元混合物竞争吸附特性以及驱替特性进行了综合分析, 对气体在纳微米孔隙中吸附及驱替特性的基础研究及关键问题进行讨论分析并提出了展望. 研究表明CH4在页岩储层中表现为物理吸附, 有机质特征(丰度、成熟度、类型)、孔隙结构、无机矿物组成、温度和压力、含水率对页岩的CH4吸附能力均有一定程度的影响. 在相同条件下, CO2比CH4更易被页岩储层吸附, 在页岩储层中注入CO2可以促进CH4的解吸, 并有利于CO2的地质埋存. 开采方案的部署可采用井网形式的注采方式, 可以通过调整注入井的位置、数量以及CO2注入速率对开采方案进行优化.

     

  • 图  1  中国页岩气资源分布[3]

    Figure  1.  Distribution of shale plays in China[3]

    图  2  狭缝孔隙气固界面吸附示意图[35]

    Figure  2.  Schematics of gas-solid interface adsorption[35]

    图  3  张家口新元古代下马岭页岩显微组分照片[38]

    Figure  3.  Maceral photographs of the neoproterozoic Xiamaling shale[38]

    图  4  吸附装置流程[47]

    Figure  4.  Working principle of adsorption instrument[47]

    图  5  (a)高岭石微孔中两层吸附层: SAL, 强吸附层; WAL, 弱吸附层; (b)不同吸附层, 高岭石孔中CO2/CH4的选择性[67]

    Figure  5.  (a) Two adsorption layers in kaolinite micropores. SAL, strong adsorption layer; WAL, weak adsorption layer. (b) Selectivity of CO2/CH4 in kaolinite pores at different adsorption layers[67]

    图  6  (a)注气后22 m厚储层混合区域的分布; (b)不考虑重力影响, 注气后22 m厚储层混合区域的分布; (c)注气后50 m厚储层混合区分布; (d)注气后100 m厚储层混合区分布[82]

    Figure  6.  (a) The distribution of the 22 m thick reservoir mixing zone after gas injection. (b) The distribution of the mixing zone of 22 m thick reservoir after gas injection without considering the influence of gravity. (c) The distribution of the 50 m thick reservoir mixing zone after gas injection. (d) The distribution of the 100 m thick reservoir mixing zone after gas injection[82]

    图  7  (a)三维模拟结果的平面. IW和PW分别表示注入井和生产井的位置; (b)超临界层状油藏模拟基本情况的成分分布的时间演化[83]

    Figure  7.  (a) 3D simulation results of the plane. IW and PW represent the location of the injection and production well. (b) Temporal evolution of component distribution in a supercritical layered reservoir simulation base case[83]

  • [1] Wang M, Ronald WT, Song G, et al. Geochemical and geological characteristics of the Es3 L lacustrine shale in the Bonan sag, Bohai Bay Basin, China. International Journal of Coal Geology, 2015, 138: 16-29 doi: 10.1016/j.coal.2014.12.007
    [2] Cardott BJ. Thermal maturity of Woodford Shale gas and oil plays, Oklahoma, USA. International Journal of Coal Geology, 2012, 103: 109-119 doi: 10.1016/j.coal.2012.06.004
    [3] 王晓琦, 翟增强, 金旭等. 页岩气及其吸附与扩散的研究进展. 化工学报, 2015, 66(8): 2838-2845 (Wang Xiaoqi, Zhai Zengqiang, Jin Xu, et al. Progress in adsorption and diffusion of shale gas. Journal of Chemical Industry and Engineering, 2015, 66(8): 2838-2845 (in Chinese)
    [4] Zeng B, Duan H, Bai Y, et al. Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator. Energy, 2018, 151: 238-249 doi: 10.1016/j.energy.2018.03.045
    [5] Li A, Han W, Fang Q, et al. Experimental investigation of methane adsorption and desorption in water-bearing shale. Capillarity, 2002, 3(3): 45-55
    [6] Curtis JB. Fractured shale-gas systems. AAPG Bulletin, 2002, 86(11): 1921-1938
    [7] Ji K, Guo S, Hou B. A logging calculation method for shale adsorbed gas content and its application. Journal of Petroleum Science and Engineering, 2017, 150: 250-256 doi: 10.1016/j.petrol.2016.12.008
    [8] Li P, Jiang Z, Zheng M, et al. Estimation of shale gas adsorption capacity of the Longmaxi formation in the upper Yangtze Platform, China. Journal of Natural Gas Science and Engineering, 2016, 34: 1034-1043 doi: 10.1016/j.jngse.2016.07.052
    [9] Feng Q, Xu S, Xing X, et al. Advances and challenges in shale oil development: A critical review. Advances in Geo-Energy Resarch, 2020, 4(4): 406-418 doi: 10.46690/ager.2020.04.06
    [10] Gregg SJ, Sing KSW. Adsorption surface area and porosity. Academic Press, 1982, 94(2): 597-598
    [11] Wang J, Song H, Rasouli V, et al. An integrated approach for gas-water relative permeability determination in nanoscale porous media. Journal of Petroleum Science and Engineering, 2019, 173: 237-245 doi: 10.1016/j.petrol.2018.10.017
    [12] Gao Z, Fan Y, Xuan Q, et al. A review of shale pore structure evolution characteristics with increasing thermal maturities. Advances in Geo-Energy Research, 2020, 4(3): 247-259 doi: 10.46690/ager.2020.03.03
    [13] Zhang Q, Liu R, Pang Z, et al. Chracterization of microscopic pore structures in lower silurian black shale (S1l), southeastern Chongqing, China. Marine and Petroleum Geology, 2016, 71: 250-259 doi: 10.1016/j.marpetgeo.2015.12.015
    [14] Chen H, Carter KE. Water usage for natural gas production through hydraulic fracturing in the United States from 2008 to 2014. Journal of Environmental Management, 2016, 170: 152-159
    [15] Clarkson CR, Haghshenas B, Ghanizadeh A, et al. Nanopores to megafractures: current challenges and methods for shale gas reservoir and hydraulic fracture characterization. Journal of Natural Gas Science and Engineering, 2016: 612-657
    [16] Mohamadi A, Behnia M, Alneasan M. Comparison of the classical and fracture mechanics approaches to determine in situ stress/hydrofracturing method. Bulletin of Engineering Geology and the Environment, 2021, 80: 3833-3851
    [17] Zhang L, Wang Y, Miao X, et al. Geochemistry in geologic CO2 utilization and storage: A brief review. Advances in Geo-Energy Resarch, 2019, 3(3): 304-313 doi: 10.26804/ager.2019.03.08
    [18] Makaremi M, Jordan KD, Guthrie GD, et al. Multiphase Monte Carlo and molecular dynamics simulations of water and CO2 intercalation in montmorillonite and beidellite. The Journal of Physical Chemistry C, 2015, 119(27): 15112-15124 doi: 10.1021/acs.jpcc.5b01754
    [19] Sun H, Zhao H, Qi N, et al. Molecular insight into the micro-behaviors of CH4 and CO2 in montmorillonite slit-nanopores. Molecular simulation, 2017, 43(13-16): 1004-1011 doi: 10.1080/08927022.2017.1328553
    [20] 尹帅, 单钰铭, 郑莲慧等. 页岩气等温吸附量及等量吸附热研究. 科学技术与工程, 2013, 13(29): 8572-8578 (Yin Shuai, Shan Yuming, Zheng Lianhui, et al. Research of shale gas isothemal adsorption quantity and equal amount adsorption heat. Science Technology and Engineering, 2013, 13(29): 8572-8578 (in Chinese) doi: 10.3969/j.issn.1671-1815.2013.29.005
    [21] 隋宏光, 姚军. CO2/CH4在干酪根中竞争吸附规律的分子模拟. 中国石油大学学报, 2016, 40(2): 147-154 (Sui Hongguang, Yao Jun. Molecular simulation of CO2/CH4 competitive adsorption in kerogen. Journal of China University of Petroleum, 2016, 40(2): 147-154 (in Chinese)
    [22] Chen L, Liu K, Jiang S, et al. Effect of adsorbed phase density on the correction of methane excess adsorption to absolute adsorption in shale. Chemical Engineering Journal, 2021, 420: 127678 doi: 10.1016/j.cej.2020.127678
    [23] Wang T, Tian S, Liu Q, et al. Pore structure characterization and its effect on methane adsorption in shale kerogen. Petroleum Science, 2021, 18(2): 565-578 doi: 10.1007/s12182-020-00528-9
    [24] Onawole AT, Nasser MS, Hussein IA, et al. Theoretical studies of methane adsorption on Silica-Kaolinite interface for shale reservoir application. Applied Surface Science, 2021, 546: 149164 doi: 10.1016/j.apsusc.2021.149164
    [25] Tian W, Liu H. Insight into the adsorption of methane on gas shales and the induced shale swelling. ACS Omega, 2020, 5(49): 31508-31517 doi: 10.1021/acsomega.0c02980
    [26] Kong S, Huang X, Li K, et al. Adsorption/desorption isotherms of CH4 and C2H6 on typical shale samples. Fuel, 2019, 255: 115632
    [27] 郭春礼, 杨爽, 王安东等. 修武盆地下寒武统海相页岩储层及CH4吸附特征. 天然气地球科学, 2021, 32(4): 598-610 (Guo Chunli, Yang Shuang, Wang Andong, et al. Study on the lower cambrian marine shale reservoir and methane adsorption characteristics in Xiuwu Basin. Natural Gas Geoscience, 2021, 32(4): 598-610 (in Chinese)
    [28] Zhou S, Ning Y, Wang H, et al. Investigation of methane adsorption mechanism on Longmaxi shale by combining the micropore filling and monolayer coverage theories. Advances in Geo-Energy Resarch, 2018, 2(3): 269-281 doi: 10.26804/ager.2018.03.05
    [29] 沈伟军, 李熙喆, 鲁晓兵等. 基于等温吸附的页岩水分传输特征研究. 力学学报, 2019, 51(3): 932-939 (Shen Weijun, Li Xizhe, Lu Xiaobing, et al. Study on moisture transport characteristics of shale based on isothermal adsorption. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 932-939 (in Chinese)
    [30] 陈磊, 姜振学, 温暖等. 页岩纳米孔隙分形特征及其对甲烷吸附性能的影响. 科学技术与工程, 2017, 17(2): 31-39 (Chen Lei, Jiang Zhenxue, Wen Nuan, et al. Fractal characteristics of nanopores and their effect on methane adsorption capacity in shales. Science Technology and Engineering, 2017, 17(2): 31-39 (in Chinese) doi: 10.3969/j.issn.1671-1815.2017.02.006
    [31] 朱汉卿, 贾爱林, 位云生等. 蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力. 石油学报, 2018, 39(4): 391-401 (Zhu Hanqing, Jia Ailin, Wei Yunsheng, et al. Pore structure and supercritical methane sorption capacity of organic-rich shales in southern sichuan basin. Acta Petrolei Sinica, 2018, 39(4): 391-401 (in Chinese)
    [32] Mu Z, Ning Z, Ren C. Methane adsorption on shales and application of temperature-related composite models based on dual adsorption modes. Journal of Petroleum Science and Engineering, 2022, 208: 109379 doi: 10.1016/j.petrol.2021.109379
    [33] 赵丹, 蔡长宏, 安珏东等. 页岩中基于孔隙度和有机碳含量的甲烷吸附量计算. 石油与天然气化工, 2018, 23(2): 31-38 (Zhao Dan, Cai Changhong, An Yudong, et al. Calculation of methane adsorption in shale based on porosity and organic carbon content. Chemical Engineering of Oil & Gas, 2018, 23(2): 31-38 (in Chinese) doi: 10.3969/j.issn.1007-3426.2018.02.006
    [34] 薛培, 高栋臣, 孙建博等. 鄂尔多斯盆地延长组页岩吸附热力学特征. 煤田地质与勘探, 2018, 46(4): 22-27 (Xue Pei, Gao Dongchen, Sun Jianbo, et al. Adsorption thermodynamic property of yanchang formation shale in ordos basin. Coal Geology & Exploration, 2018, 46(4): 22-27 (in Chinese) doi: 10.3969/j.issn.1001-1986.2018.04.004
    [35] 李靖, 李相方, 王香增等. 页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影响. 力学学报, 2016, 48(5): 1217-1228 (Li Jing, Li Xiangfang, Wang Xiangzeng, et al. Effect of water distribution on methane adsorption capacitu in shale clay. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228 (in Chinese)
    [36] Bai J, Kang Y, Chen M, et al. Impact of water film on methane surface diffusion in gas shale organic nanopores. Journal of Petroleum Science and Engineering, 2021, 196: 108045 doi: 10.1016/j.petrol.2020.108045
    [37] Zhao P, Xie L, He B, et al. Anisotropic permeability influencing the performance of free CH4 and free CO2 during the process of CO2 sequestration and enhanced gas recovery (CS-EGR) from shale. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 914-926
    [38] Xu LW, Liu LF, Jiang ZX, et al. Methane adsorption in the low-middle-matured Neoproterozoic Xiamaling marine shale in Zhangjiakou, Hebei. Australian Journal of Earth Sciences, 2018, 65(5): 691-710 doi: 10.1080/08120099.2018.1455741
    [39] Gensterblum Y, Busch A, Krooss BM. Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material. Fuel, 2014, 115: 581-588 doi: 10.1016/j.fuel.2013.07.014
    [40] Xiong J, Liu X, Liang L, et al. Adsorption of methane in organic-rich shale nanopores: ans experimental and molecular simulation study. Fuel, 2017, 200: 299-315 doi: 10.1016/j.fuel.2017.03.083
    [41] Chen S, Zhang C, Li X, et al. Simulation of methane adsorption in diverse organic pores in shale reservoirs with multi-period geological evolution. International Journal of Coal Science & Technology, 2021, 8: 844-855
    [42] 王擎, 李础安, 潘朔等. CH4和CO2在油页岩中矿物质结构内部吸附的分子模拟. 燃料化学学报, 2017, 45(11): 1310-1316 (Wang Qing, Li Chuan, Pan Shuo, et al. A molecular simulation study on the adsorption of CH4 and CO2 on the mineral substances in oil shale. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1310-1316 (in Chinese) doi: 10.3969/j.issn.0253-2409.2017.11.005
    [43] Chen L, Huang D, Wang S, et al. A study on dynamic desorption process of methane in slits. Energy, 2019, 175: 1174-1180 doi: 10.1016/j.energy.2019.03.148
    [44] Sui H, Yao J, Zhang L. Molecular simulation of shale gas adsorption and diffusion in clay nanopores. Computation, 2015, 3(4): 687-700 doi: 10.3390/computation3040687
    [45] 陈强, 孙雷, 潘毅等. 页岩纳米孔内超临界CO2、CH4传输行为实验研究. 西南石油大学学报(自然科学版), 2018, 40(5): 154-162 (Chen Qiang, Sun Lei, Pan Yi, et al. Experimental study on the transmission behaviors of supercritical CO2 and CH4 in shale nanapores. Journal of Southwest Petroleum University (Science &Technology Edition), 2018, 40(5): 154-162 (in Chinese)
    [46] 贾连超, 刘鹏飞, 袁丹等. 注CO2提高页岩吸附气采收率实验——以鄂尔多斯盆地延长组长7页岩气为例. 大庆石油地质与开发, 2021, 40(2): 153-159 (Jia Lianchao, Liu Pengfei, Yuan Dan, et al. Experiment of enhancing the recovery of the shale adsorbed gas by CO2 injection: taking yanchang-formation chang-7 shale gas in ordos basin as an example. Petroleum Geology &Oilfield Development in Daqing, 2021, 40(2): 153-159 (in Chinese)
    [47] 杨飞, 岳长涛, 李术元等. 四川盆地志留系页岩CH4和CO2吸附特征. 化工学报, 2017, 68(10): 3851-3859 (Yang Fei, Yue Changtao, Li Shuyuan, et al. Adsorption characteristics of CH4 and CO2 on silurian shale in sichuan basin. Journal of Chemical Industry and Engineering, 2017, 68(10): 3851-3859 (in Chinese)
    [48] 孙莹, 孙仁远, 刘晓强等. 基于竞争吸附的页岩气藏提高采收率机理. 新疆石油地质, 2021, 42(2): 224-231 (Sun Ying, Sun Renyuan, Liu Xiaoqiang, et al. Mechanism of enhanced gas recovery in shale gas reservoirs based on competitive adsorption. Xinjiang Petroleum Geology, 2021, 42(2): 224-231 (in Chinese)
    [49] 卓亭妤, 都喜东, 周敏琪. 不同状态CO2驱替页岩吸附CH4的动态特性研究. 中国科技论文, 2020, 15(5): 509-514

    Zhuo Tingyu, Du Xidong, Zhou Minqi, Study on dynamic characteristics about the displacement of adsorbed CH4 on shale by injecting different states of CO2. China Science Paper, 2020, 15(5): 509-514 (in Chinese)
    [50] Liu J, Yao Y, Liu D, et al. Experimental evaluation of CO2 enhanced recovery of adsorbed-gas from shale. International journal of coal geology, 2017, 179: 211-218 doi: 10.1016/j.coal.2017.06.006
    [51] Luo X, Wang S, Wang Z, et al. Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China. International Journal of Coal Geology, 2015, 150-151: 210-223 doi: 10.1016/j.coal.2015.09.004
    [52] Lee H, Kim H, Shi Y, et al. Competitive adsorption of CO2/CH4 mixture on dry and wet coal from subcritical to supercritical conditions. Chemical Engineering Journal, 2013, 230: 93-101 doi: 10.1016/j.cej.2013.06.036
    [53] Kang G, Zhang B, Kang T, et al. Effect of Pressure and temperature on CO2/CH4 competitive adsorption on kaolinite by Monte Carlo simulations. Materials, 2020, 13(12): 2851 doi: 10.3390/ma13122851
    [54] Du X, Gu M, Hou Z, et al. Experimental study on the kinetics of adsorption of CO2 and CH4 in Gas-Bearing shale reservoirs. Energy & Fuels, 2019, 33(12): 12587-12600
    [55] Taraba B. Flow calorimetric insight to competitive sorption of carbon dioxide and methane on coal. Thermochimica Acta, 2011, 523(1-2): 250-252 doi: 10.1016/j.tca.2011.05.007
    [56] Liu J, Xie H, Wang Q, et al. Influence of pore structure on shale gas recovery with CO2 sequestration: Insight into molecular mechanisms. Energy & Fuels, 2020, 34(2): 1240-1250
    [57] Yang N, Liu S, Yang X. Molecular simulation of preferential adsorption of CO2 over CH4 in namontmorillonite clay material. Applied Surface Science, 2015, 356: 1262-1271 doi: 10.1016/j.apsusc.2015.08.101
    [58] Wang T, Tian S, Li G, et al. Selective adsorption of supercritical carbon dioxide and methane binary mixture in shale kerogen nanopores. Journal of Natural Gas Science and Engineering, 2018, 50: 181-188 doi: 10.1016/j.jngse.2017.12.002
    [59] Chong L, Myshakin EM. The effect of residual water content on preferential adsorption in carbon dioxide – methane – illite clay minerals: A molecular simulation study. Fluid Phase Equilibria, 2020, 504: 112333 doi: 10.1016/j.fluid.2019.112333
    [60] Chen C, Hu W, Sun J, et al. CH4 adsorption and diffusion in shale pores from molecular simulation and a model for CH4 adsorption in shale matrix. International Journal of Heat and Mass Transfer, 2019, 141: 367-378 doi: 10.1016/j.ijheatmasstransfer.2019.06.087
    [61] Zhai Z, Wang X, Jin X, et al. Adsorption and diffusion of shale gas reservoirs in modeled clay minerals at different geological depths. Energy & Fuels, 2014, 28(12): 7467-7473
    [62] Chen G, Lu S, Liu K, et al. GCMC simulations on the adsorption mechanisms of CH4 and CO2 in K-illite and their implications for shale gas exploration and development. Fuel, 2018, 224: 521-528 doi: 10.1016/j.fuel.2018.03.061
    [63] Sharma A, Namsani S, Singh JK. Molecular simulation of shale gas adsorption and diffusion in inorganic nanopores. Molecular Simulation, 2015, 41(5-6): 414-422 doi: 10.1080/08927022.2014.968850
    [64] Li Y, Hu Z, Liu X, et al. Pressure-dependent equilibrium molecular simulation of shale gas and its distribution and motion characteristics in organic-rich nano-slit. Fuel, 2019, 237: 1040-1049 doi: 10.1016/j.fuel.2018.10.050
    [65] Wang X, Zhai Z, Jin X, et al. Molecular simulation of CO2/CH4 competitive adsorption in organic matter pores in shale under certain geological conditions. Petroleum Exploration and Development Online, 2016, 43(5): 841-848 doi: 10.1016/S1876-3804(16)30100-8
    [66] Liu Y, Ma X, Li HA, et al. Competitive adsorption behavior of hydrocarbon(s)/CO2 mixtures in a double-nanopore system using molecular simulations. Fuel, 2019, 252: 612-621 doi: 10.1016/j.fuel.2019.04.123
    [67] Zhou W, Wang H, Yan Y, et al. Adsorption mechanism of CO2/CH4 in Kaolinite clay: insight from molecular simulation. Energy & Fuels, 2019, 33(7): 6542-6551
    [68] 蔡建超, 夏宇轩, 徐赛等. 含水合物沉积物多相渗流特性研究进展. 力学学报, 2020, 52(1): 208-223 (Cai Jianchao, Xia Yuxuan, Xu Sai, et al. Advaneces in multiphase seepage characteristics of natural gas hydrate sediments. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223 (in Chinese)
    [69] 宋洪庆, 刘启鹏, 于明旭等. 页岩气渗流特征及压裂井产能. 北京科技大学学报, 2014(2): 139-144 (Song Hongqing, Liu Qipeng, Yu Mingxu, et al. Characteristics of gas flow and productivity of fractured wells in shale gas sediments. Journal of University of Science and Technology Beijing, 2014(2): 139-144 (in Chinese)
    [70] Oldenburg CM. Carbon dioxide as cushion gas for natural gas storage. Energy & Fuels, 2003, 17(1): 240-246
    [71] Hughes TJ, Honari A, Graham BF, et al. CO2 sequestration for enhanced gas recovery: new measurements of supercritical CO2–CH4 dispersion in porous media and a review of recent research. International Journal of Greenhouse Gas Control, 2012, 9: 457-468 doi: 10.1016/j.ijggc.2012.05.011
    [72] Oldenburg CM, Pruess K, Benson SM. Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy & Fuels, 2001, 15(2): 293-298
    [73] Sidiq H, Amin R. Mathematical model for calculating the dispersion coefficient of super critical CO2 from the results of laboratory experiments on enhanced gas recovery. Journal of Natural Gas Science and Engineering, 2009, 1(6): 177-182 doi: 10.1016/j.jngse.2009.11.001
    [74] Sidiq H, Amin R. The Impact of pore pressure on CO2-methane displacement. Petroleum Science and Technology, 2012, 30(24): 2531-2542 doi: 10.1080/10916466.2010.516300
    [75] Ding J, Yan C, He Y, et al. Supercritical CO2 sequestration and enhanced gas recovery in tight gas reservoirs: Feasibility and factors that influence efficiency. International Journal of Greenhouse Gas Control, 2021, 105: 103234 doi: 10.1016/j.ijggc.2020.103234
    [76] Liu S, Sun B, Xu J, et al. Study on competitive adsorption and displacing properties of CO2 enhanced shale gas recovery: advances and challenges. Geofluids, 2020, 2020: 1-15
    [77] Luo E, Hu Y, Wang J, et al. The effect of impurity on miscible CO2 displacement mechanism. Oil & Gas Science and Technology – Revue dIFP Energies Nouvelles, 2019, 74: 86
    [78] Chen R, Zhang G, Yi C. Research progress and prospects of CO2 enhanced shale gas recovery and geologic sequestration. E3S Web of Conferences, 2018, 53: 4002 doi: 10.1051/e3sconf/20185304002
    [79] Huo P, Zhang D, Yang Z, et al. CO2 geological sequestration: Displacement behavior of shale gas methane by carbon dioxide injection. International Journal of Greenhouse Gas Control, 2017, 66: 48-59 doi: 10.1016/j.ijggc.2017.09.001
    [80] Hou P, Ju Y, Gao F, et al. Simulation and visualization of the displacement between CO2 and formation fluids at pore-scale levels and its application to the recovery of shale gas. International Journal of Coal Science & Technology, 2016, 3(4): 351-369
    [81] Shi Y, Jia Y, Pan W, et al. Potential evaluation on CO2-EGR in tight and low-permeability reservoirs. Natural Gas Industry B, 2017, 4(4): 311-318 doi: 10.1016/j.ngib.2017.08.013
    [82] Ma J, Li Q, Kempka T, et al. Hydromechanical response and impact of gas mixing behavior in subsurface CH4 storage with CO2-based cushion gas. Energy & Fuels, 2019, 33(7): 6527-6541
    [83] Patel MJ, May EF, Johns ML. High-fidelity reservoir simulations of enhanced gas recovery with supercritical CO2. Energy, 2016, 111: 548-559 doi: 10.1016/j.energy.2016.04.120
    [84] Song H, Yu M, Zhu W, et al. Numerical investigation of gas flow rate in shale gas reservoirs with nanoporous media. International Journal of Heat and Mass Transfer, 2015, 80: 626-635 doi: 10.1016/j.ijheatmasstransfer.2014.09.039
    [85] Liu S, Agarwal R, Sun B, et al. Numerical simulation and optimization of injection rates and wells placement for carbon dioxide enhanced gas recovery using a genetic algorithm. Journal of Cleaner Production, 2021, 280: 2-21
    [86] Biagi J, Agarwal R, Zhang Z. Simulation and optimization of enhanced gas recovery utilizing CO2. Energy, 2016, 94: 78-86 doi: 10.1016/j.energy.2015.10.115
    [87] Luo C, Zhang D, Lun Z, et al. Displacement behaviors of adsorbed coalbed methane on coals by injection of SO2/CO2 binary mixture. Fuel, 2019, 247: 356-367 doi: 10.1016/j.fuel.2019.03.057
    [88] Liu J, Xie L, He B, et al. Performance of free gases during the recovery enhancement of shale gas by CO2 injection: a case study on the depleted Wufeng–Longmaxi shale in northeastern Sichuan Basin, China. Petroleum Science, 2021, 18(2): 530-545 doi: 10.1007/s12182-020-00533-y
  • 加载中
图(8)
计量
  • 文章访问数:  557
  • HTML全文浏览量:  347
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-20
  • 录用日期:  2021-09-22
  • 网络出版日期:  2021-09-23
  • 刊出日期:  2021-10-26

目录

    /

    返回文章
    返回