EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速高焓条件下的内嵌式温敏漆测量方法

苑朝凯 姜宗林

苑朝凯, 姜宗林. 高超声速高焓条件下的内嵌式温敏漆测量方法. 力学学报, 2022, 54(1): 1-11 doi: 10.6052/0459-1879-21-279
引用本文: 苑朝凯, 姜宗林. 高超声速高焓条件下的内嵌式温敏漆测量方法. 力学学报, 2022, 54(1): 1-11 doi: 10.6052/0459-1879-21-279
Yuan Chaokai, Jiang Zonglin. Measurement method of embedded temperature sensitive paint under hypersonic high enthalpy conditions. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-11 doi: 10.6052/0459-1879-21-279
Citation: Yuan Chaokai, Jiang Zonglin. Measurement method of embedded temperature sensitive paint under hypersonic high enthalpy conditions. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-11 doi: 10.6052/0459-1879-21-279

高超声速高焓条件下的内嵌式温敏漆测量方法

doi: 10.6052/0459-1879-21-279
基金项目: 国家自然科学基金资助项目(11602275)
详细信息
    作者简介:

    苑朝凯, 高级工程师, 主要研究方向: 高超声速测量技术. E-mail: yuanck@imech.ac.cn

  • 中图分类号: V211.7

MEASUREMENT METHOD OF EMBEDDED TEMPERATURE SENSITIVE PAINT UNDER HYPERSONIC HIGH ENTHALPY CONDITIONS

  • 摘要: 热流密度点测量结果并不能完全反映详细的热流分布特征, 尤其是针对热流梯度较大、热流分布复杂的区域, 需要热流密度场测量技术以获取全场精细的热流分布特征. 应用温敏漆测量热流密度场的方法得到了广泛应用, 但实验条件来流总温较低, 与真实飞行环境存在明显差异, 真实飞行条件下的辐射效应严重限制了温敏漆技术的应用. 针对高超声速高焓条件下缺乏热流密度场测量方法的难题, 提出了内嵌式温敏漆测量方法, 基本思想是利用温敏漆测量内壁面温度的变化历程结合热传导反问题的求解确定热流密度. 本文详细介绍了内嵌式温敏漆测量方法的测量原理、测量系统构成、数据处理方法、设计原则及该测量方法的优势. 针对高超声速风洞实验中常见的阶跃、线性和局部突变等热流密度分布进行了数值验证, 验证了内嵌式温敏漆测量方法的可行性, 并分析了风洞实验温度测量精度及噪声对测量结果的影响. 内嵌式温敏漆测量方法可用于测量高超声速真实飞行环境下细致的气动热特征, 扩展了温敏漆测量方法的应用范围, 解决了高超声速高焓条件下缺乏热流密度场测量方法的难题.

     

  • 图  1  测量敏感单元(1: 量热层 2: 温敏漆层 3: 玻璃基底 4量热层外壁面 5 量热层内壁面)

    Figure  1.  Measurement sensitive unit (1: Calorimetric layer 2: Temperature sensitive paint layer 3: Glass substrate 4: Outer wall of the calorimetric layer 5: Inner wall of the calorimetric layer)

    图  2  测量系统示意图

    Figure  2.  Schematic of the measuring system

    图  3  坐标系定义

    Figure  3.  Coordinate system

    图  4  局部峰值热流分布时内壁面温度变化历程(续)

    Figure  4.  Variation of inner wall temperature under local peak heat flux distribution (continued)

    4  局部峰值热流分布时内壁面温度变化历程

    4.  Variation of inner wall temperature under local peak heat flux distribution

    图  5  局部峰值热流分布时内壁面温度(y = 0.1 m)

    Figure  5.  Inner wall temperature under local peak heat flux distribution (y = 0.1 m)

    图  6  线性热流分布时内壁面温度(y=0.1 m)

    Figure  6.  Inner wall temperature under linear heat flux distribution (y = 0.1 m)

    图  7  阶跃热流分布时内壁面温度(y = 0.1 m)

    Figure  7.  Inner wall temperature under step heat flux distribution (y = 0.1 m)

    图  8  定常热流密度分布辨识结果

    Figure  8.  Identification results of steady heat flux distribution

    图  9  定常热流密度辨识结果与准确值间的差异

    Figure  9.  Difference between identification results and accurate value of steady heat flux

    图  10  非定常热流密度辨识结果

    Figure  10.  Identification results of unsteady heat flux distribution

    图  11  非定常热流密度辨识结果与准确值间的差异

    Figure  11.  Difference between identification results and accurate value of unsteady heat flux

    图  12  温度测量精度对辨识结果的影响

    Figure  12.  Effect of temperature measurement accuracy on identification results

    图  13  包含测量噪声的内壁面温度分布(y = 0.1 m)

    Figure  13.  Inner wall temperature distribution including measurement noise

    图  14  滤波后热流密度辨识结果

    Figure  14.  Identification results of heat flux with filtering

    图  15  滤波后热流密度辨识偏差

    Figure  15.  Deviation of heat flux identification with filtering

  • [1] 王振国, 梁剑寒, 丁猛等. 高超声速飞行器动力系统研究进展. 力学进展, 2009, 39(6): 716-739 (Wang Zhenguo, Liang Jianhan, Ding Meng, et al. A review of hypersonic airbreathing propulsion system. Advances in Mechanics, 2009, 39(6): 716-739 (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.06.011
    [2] Zhang T, Wang Z, Huang W, et al. An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission. Energy, 2020, 193: 116709 doi: 10.1016/j.energy.2019.116709
    [3] Lobo JU. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 2018, 50: 593-627 doi: 10.1146/annurev-fluid-122316-045217
    [4] 金新航, 马炳和, 邱涛等. 超燃冲压发动机温度及热流测量技术研究进展. 实验流体力学, 2018, 32(2): 74-81 (Jin Xinhang, Ma Binghe, Qiu Tao, et al. Temperature and heat flux measurement technologies in scramjet. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 74-81 (in Chinese)
    [5] Goldfeld M. The heat flux research in hydrogen supersonic combustor at Mach number of 4. International Journal of Hydrogen Energy, 2021, 46(24): 13365-13376 doi: 10.1016/j.ijhydene.2021.01.093
    [6] Laurence SJ, Lieber D, Martinez Schramm J, et al. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet Part I: Shock-tunnel Experiments combustor. Combustion and Flame, 2015, 162(4): 921-931
    [7] 苑朝凯, 李进平, 陈宏等. 高超声速溢流冷却实验研究. 力学学报, 2018, 50(1): 1-8 (Yuan Chaokai, Li jinping, Chen Hong, et al. Experimental study of hypersonic overflow cooling. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 1-8 (in Chinese) doi: 10.6052/0459-1879-17-289
    [8] 张永江, 仲峰泉, 邢云绯等. 流量突变条件下煤油流动与对流传热特性实验. 航空动力学报, 2018, 33(5): 1186-1192 (Zhang Yongjiang, Zhong Fengquan, Xing Yunfei, et al. Experiment on flow and heat transfer of aviation kerosene with time variation of inlet mass flow rate. Journal of Aerospace Power, 2018, 33(5): 1186-1192 (in Chinese)
    [9] Zhang C, Yao Z, Qin J, et al. Experimental study on measurement and calculation of heat flux in supersonic combustor of scramjet. Journal of Thermal Science, 2015, 24(3): 254-259 doi: 10.1007/s11630-015-0781-3
    [10] Kennedy P, Donbar J, Trelewicz J, et al. : Heat flux measurements in a scramjet combustor using direct write technology//17 th AIAA International Space Planes and Hypersonic Systems and Technologies Conference: American Institute of Aeronautics and Astronautics, 2011.
    [11] 俞刚, 范学军. 超声速燃烧与高超声速推进. 力学进展, 2013, 43(5): 449-472 (Yu Gang, Fan Xuejun. Supersonic combustion and hypersonic propulsion. Advances in Mechanics, 2013, 43(5): 449-472 (in Chinese)
    [12] 孟松鹤, 丁小恒, 易法军等. 高超声速飞行器表面测热技术综述. 航空学报, 2014, 35(7): 1759-1775 (Meng Songhe, Ding Xiaoheng, Yi Fajun, et al. Overview of heat measurement technology for hypersonic vehicle surfaces. Acta Aeronautica et Asrtonautica Sinica, 2014, 35(7): 1759-1775 (in Chinese)
    [13] Gulhan A. Heat flux measurements in high enthalpy flows. Technical Report, 1999, ADA390586.
    [14] Cheng D, Wang J, Lu Y, et al. Wall heat flux measurements for a kerosene-fueled supersonic combustor. Journal of Aerospace Engineering, 2019, 32(5): 04019080 doi: 10.1061/(ASCE)AS.1943-5525.0001076
    [15] Li L, Wang J, Fan X. Development of integrated high temperature sensor for simultaneous measurement of wall heat flux and temperature. Review of Scientific Instruments, 2012, 83(7): 074901 doi: 10.1063/1.4731685
    [16] Gardner A, Steelant J, Paull A, et al. : Ground testing of the hyshot supersonic combustion flight experiment in HEG and comparison with flight data//40 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit: American Institute of Aeronautics and Astronautics, 2004.
    [17] 刘旭, 彭迪, 刘应征. 温敏涂料TSP热流密度测量方法及应用. 气体物理, 2020, 5(5): 1-12 (Liu Xu, Peng Di, Liu Yingzheng. Methods and application of heat flux measurement using TSP. Physics of Gases, 2020, 5(5): 1-12 (in Chinese)
    [18] Peng D, Xie F, Liu X, et al. Experimental study on hypersonic shock–body interaction between bodies in close proximity using translucent fast pressure- and temperature-sensitive paints. Experiments in Fluids, 2020, 61(5): 120 doi: 10.1007/s00348-020-02948-0
    [19] Risius S, Beck WH, Klein C, et al. Determination of heat transfer into a wedge model in a hypersonic flow using temperature-sensitive paint. Experiments in Fluids, 2017, 58(9): 117 doi: 10.1007/s00348-017-2393-z
    [20] 韩曙光, 贾广森, 文帅等. 磷光热图技术在常规高超声速风洞热环境实验中的应用. 气体物理, 2017, 2(4): 56-63 (Han Shuguang, Jia Guangsen, Wen Shuai, et al. Heat Transfer measurement using a quantitative phosphor thermography system in blowdown hypersonic facility. Physic of Gases, 2017, 2(4): 56-63 (in Chinese)
    [21] 霍俊杰, 易仕和, 牛海波等. 基于温敏漆技术的圆锥高超声速大攻角绕流背风面流动结构实验研究. 气体物理, 2021. DOI: 10.19527/j/cnki. 2096-1642.0906.

    Huo Junjie, Yi Shihe, Niu Haibo, et al. Experimental study of flow on the leeward side of a cone at a high angle of attack based on temperature sensitive paint. Physic of Gases, 2021,DOI: 10.19527/j/cnki.2096-1642.0906.(in Chinese)
    [22] 尚金奎, 王鹏, 陈柳生等. TSP技术在转捩检测中的应用研究. 空气动力学学报, 2015, 33(4): 464-469 (Shang Jinkun, Wang Peng, Chen Liusheng, et al. Application research of TSP technique in transition detection. Acta Aerodynamic Sinica, 2015, 33(4): 464-469 (in Chinese) doi: 10.7638/kqdlxxb-2014.0034
    [23] Beck W, Klein C, Henne U, et al. Application of temperature and pressure sensitive paints to DLR hypersonic facilities: "lessons learned"//53 rd AIAA Aerospace Sciences Meeting (AIAA). Aiaa Journal, 2015.
    [24] Peng D, Liu Y. Fast pressure-sensitive paint for understanding complex flows: from regular to harsh environments. Experiments in Fluids, 2019, 61(1): 8
    [25] Vanyai T, Bricalli M, Sopek T, et al.: An experimental investigation of a thermal compression scramjet with OH imaging//20 th AIAA International Space Planes and Hypersonic Systems and Technologies Conference: American Institute of Aeronautics and Astronautics, 2015.
    [26] Yuan Y, Zhang T, Yao W, et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence. Proceedings of the Combustion Institute, 2017, 36(2): 2919-2925 doi: 10.1016/j.proci.2016.07.040
    [27] Yuan CK, Zhou K, Liu YF, et al. Spectral measurements of hypervelocity flow in an expansion tunnel. Acta Mechanica Sinica, 2019, 35(1): 24-31 doi: 10.1007/s10409-018-0806-8
    [28] Yuan CK, Zhou K, Hu ZM, et al. Experimental investigation of hypervelocity flow in an expansion tunnel. AIAA Journal, 2020, 58(6): 2776-2783 doi: 10.2514/1.J059086
    [29] Burt JM, Josyula E. Nonequilibrium radiation modeling for a low enthalpy hypersonic shock layer//53 rd AIAA Aerospace Sciences Meeting: American Institute of Aeronautics and Astronautics, 2015.
    [30] Burt JM, Josyula E. Direct simulation Monte Carlo modeling of gas electronic excitation for hypersonic sensing. Journal of Thermophysics and Heat Transfer, 2017, 31(4): 858-870 doi: 10.2514/1.T5058
    [31] Gallis M, Harvey J. Atomic species radiation from air shock layers modelled with DSMC//6 th Joint Thermophysics and Heat Transfer Conference: American Institute of Aeronautics and Astronautics, 1994.
    [32] Geraets RTP, Mcgilvray M, Doherty LJ, et al. Development of a fast-response diamond calorimeter heat transfer gauge. Journal of Thermophysics and Heat Transfer, 2019, 34(1): 193-202
    [33] Di Peng XL, Jiao LR, Li ZY , et al. Noise reduction for temperature-sensitive paint measurement contaminated by strong background radiation in a high enthalpy hypersonic tunnel. Acta Mechanica Sinica, 2021, 37(1): 20-26 doi: 10.1007/s10409-021-01050-w
    [34] Yuan CK, Jiang ZL. Experimental investigation of hypersonic flight-duplicated shock tunnel characteristics. Acta Mechanica Sinica, 2021, 37(3): 422-433 doi: 10.1007/s10409-020-01036-0
    [35] Nagayama T, Nagai H, Tanno H, et al. : Global heat flux measurement using temperature-sensitive paint in high-enthalpy shock tunnel HIEST//55 th AIAA Aerospace Sciences Meeting: American Institute of Aeronautics and Astronautics, 2017.
    [36] Laurence SJ, Ozawa H, Martinez Schramm J, et al. Heat-flux measurements on a hypersonic inlet ramp using fast-response temperature-sensitive paint. Experiments in Fluids, 2019, 60(4): 70 doi: 10.1007/s00348-019-2711-8
    [37] Cheng L, Zhong F, Gu H, et al. Application of conjugate gradient method for estimation of the wall heat flux of a supersonic combustor. International Journal of Heat and Mass Transfer, 2016, 96: 249-255 doi: 10.1016/j.ijheatmasstransfer.2016.01.036
    [38] Huang CH, Chen WC. A three-dimensional inverse forced convection problem in estimating surface heat flux by conjugate gradient method. International Journal of Heat and Mass Transfer, 2000, 43(17): 3171-3181 doi: 10.1016/S0017-9310(99)00330-0
    [39] Zhou J, Zhang Y, Chen JK, et al. Inverse estimation of front surface temperature of a plate with laser heating and convection–radiation cooling. International Journal of Thermal Sciences, 2012, 52: 22-30 doi: 10.1016/j.ijthermalsci.2011.09.009
    [40] Colaço MJ, Orlande HRB, Dulikravich GS. Inverse and optimization problems in heat transfer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2006, 28: 1-24 doi: 10.1590/S1678-58782006000100001
    [41] Hightower TM. Thermal capacitance (slug) calorimeter theory including heat losses and other decaying processes. Journal of Thermophysics abd Heat Transfer, 2008, 34(1): 193-202.
  • 加载中
图(16)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  5
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 录用日期:  2021-11-12
  • 网络出版日期:  2021-11-13

目录

    /

    返回文章
    返回