EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海陆过渡相页岩气藏不稳定渗流数学模型

陈志明 王佳楠 廖新维 曾联波 赵鹏飞 YuWei

陈志明, 王佳楠, 廖新维, 曾联波, 赵鹏飞, Yu Wei. 海陆过渡相页岩气藏不稳定渗流数学模型. 力学学报, 2021, 53(8): 2257-2266 doi: 10.6052/0459-1879-21-271
引用本文: 陈志明, 王佳楠, 廖新维, 曾联波, 赵鹏飞, Yu Wei. 海陆过渡相页岩气藏不稳定渗流数学模型. 力学学报, 2021, 53(8): 2257-2266 doi: 10.6052/0459-1879-21-271
Chen Zhiming, Wang Jianan, Liao Xinwei, Zeng Lianbo, Zhao Pengfei, Yu Wei. An unstable porous flow model of marine-continental transitional shale gas reservoir. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2257-2266 doi: 10.6052/0459-1879-21-271
Citation: Chen Zhiming, Wang Jianan, Liao Xinwei, Zeng Lianbo, Zhao Pengfei, Yu Wei. An unstable porous flow model of marine-continental transitional shale gas reservoir. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2257-2266 doi: 10.6052/0459-1879-21-271

海陆过渡相页岩气藏不稳定渗流数学模型

doi: 10.6052/0459-1879-21-271
基金项目: 国家自然科学基金(52074322, U762210, 52004299)和北京市自然科学基金(3204052)资助项目
详细信息
    作者简介:

    陈志明, 岗位教授, 研究方向: 非常规油气藏试井反演理论与技术方法. E-mail: zhimingchn@cup.edu.cn

  • 中图分类号: TE319

AN UNSTABLE POROUS FLOW MODEL OF MARINE-CONTINENTAL TRANSITIONAL SHALE GAS RESERVOIR

  • 摘要: 海陆过渡相页岩常与煤层和砂岩呈互层状产出, 储层连续性较差、横向变化快、非均质性强, 水力压裂技术是其获得经济产量的关键手段. 然而, 目前缺乏有效的海陆过渡相页岩气藏不稳定渗流数学模型, 对其渗流特征分析及储层参数评价不利. 针对这一问题, 首先建立海陆过渡相页岩气藏压裂直井渗流数学模型, 其次采用径向复合模型来反映强非均质性, 采用Langmuir等温吸附方程来描述气体的解吸和吸附, 分别采用双重孔隙模型和边界元模型模拟天然裂缝和水力裂缝, 建立并求解径向非均质的页岩气藏压裂直井不稳定渗流数学模型, 分析海陆过渡相页岩气藏不稳定渗流特征, 并进行数值模拟验证和模型分析应用. 分析结果表明, 海陆过渡相页岩气藏不稳定渗流特征包括流动早期阶段、双线性流、线性流、内区径向流、页岩气解吸、内外过渡段、外区径向流及边界控制阶段. 将本模型应用在海陆过渡相页岩气试井过程中, 实际资料拟合效果较好, 其研究成果可为同类页岩气藏的压裂评价提供一些理论支撑, 具有较好应用前景.

     

  • 图  1  海陆过渡相页岩气压裂直井模型

    Figure  1.  Fractured vertical well model

    图  2  边界离散示意图

    Figure  2.  Discretization of reservoir boundaries

    图  3  海陆过渡相页岩气藏不稳定渗流特征

    Figure  3.  Characteristics of unstable flow in marine-continental transitional shale gas reservoirs

    图  4  裂缝半长对不稳定渗流特征的影响

    Figure  4.  Influence of fracture half-length on unstable flow characteristics

    图  5  裂缝导流能力对不稳定渗流特征的影响

    Figure  5.  Influence of fracture conductivity on unstable flow characteristics

    图  6  临界解吸压力对不稳定渗流特征的影响

    Figure  6.  Influence of critical desorption pressure on unstable flow characteristics

    图  7  海陆过渡相页岩气压裂直井数值模型

    Figure  7.  Virtual well model

    图  8  文中计算结果与数值模拟结果对比验证

    Figure  8.  Calculated results compared with the numerical simulation results

    图  9  实际拟合压力测试数据

    Figure  9.  Practical fitted pressure data

    表  1  径向复合气藏压裂直井模型参数取值表

    Table  1.   Parameter table of fractured vertical well model in radial composite gas reservoir

    ParameterValueUnit
    well storage coefficient 0.05 m3/MPa
    skin 0 dimensionless
    fracture half length 30 m
    conductivity 100 mD·m
    porosity 5.38 %
    permeability 0.02 mD
    adsorption volume 1.06 m3·t−1
    desorption pressure 17 MPa
    下载: 导出CSV

    表  2  模型验证参数表

    Table  2.   Model parameters

    ParameterValue
    fracture fracture half length/m 30
    fracture conductivity/(mD·m) 100
    reservoir pressure/MPa 30
    permeability/mD 0.2
    porosity/% 0.0538
    wellbore well storage coefficient/(m3·MPa−1) 0.05
    skin 0.01
    shale gas adsorption volume/(m3·t−1) 1.06
    desorption pressure/MPa 17
    下载: 导出CSV

    表  3  拟合分析参数结果表

    Table  3.   Evaluated parameters using type-curve matching

    ParameterAnalysis result
    fracturefracture half length/m31 ~ 33
    fracture conductivity/(mD·m)93 ~ 101
    reservoirpermeability/mD0.06
    radius/m318
    fractured zone radius/m100
    permeability/mD0.2 ~ 0.3
    wellborestorage coefficient/(m3·MPa−1)0.16
    skin0.31
    shale gasadsorption volume/(m3·t−1)1.06 ~ 1.36
    desorption pressure/MPa16.5 ~ 17.5
    下载: 导出CSV
  • [1] 岑涛, 夏海帮, 雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发, 2020, 10(5): 70-76 (Cen Tao, Xia Haibang, Lei Lin. Research and application of atmospheric shale gas fracturing technology in southeast Chongqing. Evaluation and Development of Oil and Gas Reservoirs, 2020, 10(5): 70-76 (in Chinese)
    [2] 韩晓洁, 范昌育, 高潮等. 零水势面的确定与地层压力体系的划分——以鄂尔多斯盆地延安气田为例. 天然气工业, 2019, 41(7): 33-40 (Han Xiaojie, Fan Changyu, Gao Chao, et al. Determination of zero water potential surface and division of formation pressure system: A case study of Yan’an Gas Field in Ordos Basin. Natural Gas Industry, 2019, 41(7): 33-40 (in Chinese)
    [3] 匡立春, 董大忠, 何文渊等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景. 石油勘探与开发, 2020, 47(3): 435-446 (Kuang Lichun, Dong Dazhong, He Wenyuan, et al. Geological characteristics and exploration and development prospects of shale gas in Marine continental transitional facies in the eastern margin of Ordos Basin. Petroleum Exploration and Development, 2020, 47(3): 435-446 (in Chinese)
    [4] 柳占立, 庄茁, 孟庆国等. 页岩气高效开采的力学问题与挑战. 力学学报, 2017, 49(3): 507-516 (Liu Zhanli, Zhuang Zhuo, Meng Qingguo, et al. Mechanical problems and challenges of efficient exploitation of shale gas. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese)
    [5] 张广明, 刘勇, 刘建东等. 页岩储层体积压裂的地应力变化研究. 力学学报, 2015, 47(6): 965-972 (Zhang Guangming, Liu Yong, Liu Jiandong, et al. Study on in-situ stress variation of shale reservoir after volume fracturing. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 965-972 (in Chinese)
    [6] 曾青冬, 姚军, 孙致学. 页岩气藏压裂缝网扩展数值模拟. 力学学报, 2015, 47(6): 994-999 (Zeng Qingdong, YAO Jun, SUN Zhixue. Numerical simulation of fracture network propagation in shale gas reservoir. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 994-999 (in Chinese)
    [7] 闫德宇, 黄文辉, 李昂等. 鄂尔多斯盆地上古生界海陆过渡相页岩气聚集条件及有利区预测. 东北石油大学学报, 2013, 37(5): 1-9 (Yan Deyu, Huang Wenhui, Li Ang, et al. Shale gas accumulation conditions and favorable area prediction of the Upper Paleozoic Marine continental transitional facies in Ordos Basin. Journal of Northeast Petroleum University, 2013, 37(5): 1-9 (in Chinese) doi: 10.3969/j.issn.2095-4107.2013.05.001
    [8] 陈作, 王振铎, 曾华国. 水平井分段压裂工艺技术现状及展望. 天然气工业, 2007, 27(9): 78-80 (Chen Zuo, Wang Zhenduo, Zeng Huaguo. Current situation and prospect of horizontal well stage fracturing technology. Natural Gas Industry, 2007, 27(9): 78-80 (in Chinese) doi: 10.3321/j.issn:1000-0976.2007.09.024
    [9] 邹才能, 赵群, 丛连铸等. 中国页岩气开发进展、潜力及前景. 天然气工业, 2021, 41(1): 1-14 (Zou Caineng, Zhao Qun, Cong Lianzhu, et al. Progress, potential and prospect of shale gas development in China. Natural Gas Industry, 2021, 41(1): 1-14 (in Chinese)
    [10] Li K, Chen G, Li W, et al. Characterization of marine-terrigenous transitional Taiyuan formation shale reservoirs in Hedong coal field, China. Advances in Geo-Energy Research, 2018, 2(1): 72-85 doi: 10.26804/ager.2018.01.07
    [11] Wang W, Da Z, Sheng G, et al. A review of stimulated reservoir volume characterization for multiple fractured horizontal well in unconventional reservoirs. Advances in Geo-energy Research, 2017, 1(1): 54-63 doi: 10.26804/ager.2017.01.05
    [12] Meng M, Chen Z, Liao X, et al. A well-testing method for parameter evaluation of multiple fractured horizontal wells with non-uniform fractures in shale oil reservoirs. Advances in Geo-energy Research, 2020, 4(2): 187-198 doi: 10.26804/ager.2020.02.07
    [13] Lee S, Brockenbrough JR. A new approximate analytic solution for finite-conductivity vertical fractures. SPE Formation Evaluation, 1986, 1(1): 75-88 doi: 10.2118/12013-PA
    [14] Ozkan E, Brown ML, Raghavan RS, et al. Comparison of fractured horizontal-well performance in conventional and unconventional reservoirs//SPE Western Regional Meeting. 2009
    [15] 尹虎, 王新海, 姜永等. 页岩气藏渗流数值模拟及井底压力动态分析. 长江大学学报(自然科学版), 2012, 9(8): 68-71 (Yin Hu, Wang Xinhai, Jiang Yong, et al. Numerical simulation of shale gas flow and dynamic analysis of bottom hole pressure. Journal of Yangtze University (Natural Science Edition), 2012, 9(8): 68-71 (in Chinese)
    [16] 谢维扬. 页岩气藏不稳定压力动态及产量递减研究. [博士论文]. 成都: 西南石油大学, 2015

    (Xie Weiyang. Study on unstable pressure dynamics and production decline of shale gas reservoirs. [PhD Thesis]. Chengdu: Southwest Petroleum University, 2015 (in Chinese))
    [17] 魏明强, 段永刚, 方全堂等. 页岩气藏孔渗结构特征和渗流机理研究现状. 油气藏评价与开发, 2011, 1(4): 73-77 (Wei Mingqiang, Duan Yonggang, Fang Quantang, et al. Current research situation of porosity & permeability characteristics and seepage mechanism of shale gas reservoir. Reservoir Evaluation and Development, 2011, 1(4): 73-77 (in Chinese)
    [18] 程远方, 董丙响, 时贤等. 页岩气藏三孔双渗模型的渗流机理. 天然气工业, 2012, 32(9): 44-47 (Cheng Yuanfang, Dong Bingxiang, Shi Xian, et al. Seepage mechanism of shale gas reservoir with three holes and double permeability model. Natural Gas Industry, 2012, 32(9): 44-47 (in Chinese) doi: 10.3787/j.issn.1000-0976.2012.09.010
    [19] 段永刚, 魏明强, 李建秋等. 页岩气藏渗流机理及压裂井产能评价. 重庆大学学报, 2011, 34(4): 62-66 (Duan Yonggang, Wei Mingqiang, Li Jianqiu, et al. Percolation mechanism of shale gas reservoir and productivity evaluation of fractured well. Journal of Chongqing University, 2011, 34(4): 62-66 (in Chinese)
    [20] 张小涛, 吴建发, 冯曦等. 页岩气藏水平井分段压裂渗流特征数值模拟. 天然气工业, 2013, 33(3): 47-52 (Zhang Xiaotao, Wu Jianfa, Feng Xi, et al. Numerical simulation of seepage characteristics of horizontal well in shale gas reservoir after staged fracturing. Natural Gas Industry, 2013, 33(3): 47-52 (in Chinese)
    [21] 刘禹, 王常斌, 文建军等. 页岩气渗流中的力学模型分析//第二十五届全国水动力学研讨会暨第十二届全国水动力学学术会议, 舟山市, 2013: 6

    (Liu Yu, Wang Changbin, Wen Jianjun, et al. Mechanical model analysis of shale gas seepage//The 25th National Hydrodynamics Conference & the 12th National Hydrodynamics Conference, Zhoushan, 2013: 6 (in Chinese))
    [22] 张志军, 姜汉桥, 余春玲等. 考虑启动压力梯度和应力敏感的页岩气产能影响因素分析. 复杂油气藏, 2014, 7(2): 47-50 (Zhang Zhijun, Jiang Hanqiao, Yu Chunling, et al. Analysis of influencing factors of shale gas productivity considering start-up pressure gradient and stress sensitivity. Complex Reservoirs, 2014, 7(2): 47-50 (in Chinese) doi: 10.3969/j.issn.1674-4667.2014.02.012
    [23] 魏云, 赵自斌. 页岩气藏的渗流机理. 辽宁化工, 2013, 42(2): 152-153 (Wei Yun, Zhao Zibin. Seepage mechanism of shale gas reservoir. Liaoning Chemical Industry, 2013, 42(2): 152-153 (in Chinese) doi: 10.3969/j.issn.1004-0935.2013.02.015
    [24] 陈志明, 陈昊枢, 廖新维等. 基于试井分析的新疆吉木萨尔页岩油藏人工缝网参数反演研究. 石油科学通报, 2019, 4(3): 263-272 (Chen Zhiming, Chen Haoshu, Liao Xinwei, et al. Inversion of artificial fracture network parameters in Jimusar shale reservoir in Xinjiang Based on well test analysis. Petroleum Science Bulletin, 2019, 4(3): 263-272 (in Chinese)
    [25] 陈昊枢, 廖新维, 高敬善等. 一种页岩油藏多段压裂水平井试井分析方法. 新疆石油地质, 2019, 40(3): 357-364 (Chen Haoshu, Liao Xinwei, Gao Jingshan, et al. A well test analysis method for multi-stage fractured horizontal Wells in shale reservoirs. Xinjiang Petroleum Geology, 2019, 40(3): 357-364 (in Chinese)
    [26] 陈志明, 陈昊枢, 廖新维等. 致密油藏压裂水平井缝网系统评价方法——以准噶尔盆地吉木萨尔地区为例. 石油与天然气地质, 2020, 41(6): 1288-1298 (Chen Zhiming, Chen Haoshu, Liao Xinwei, et al. Fracture network system evaluation method for fractured horizontal Wells in tight reservoirs: A case study of Jimsar area, Junggar Basin. Oil &Gas Geology, 2020, 41(6): 1288-1298 (in Chinese)
    [27] 高杰, 张烈辉, 刘启国等. 页岩气藏压裂水平井三线性流试井模型研究. 水动力学研究与进展A辑, 2014, 29(1): 108-113 (Gao Jie, Zhang Liehui, Liu Qiguo, et al. Study on tri-linear flow well test model of fractured horizontal well in shale gas reservoir. Advances in Hydrodynamics (Series A), 2014, 29(1): 108-113 (in Chinese)
    [28] 肖聪. 页岩气藏多尺度渗流模型与产能评价研究. [硕士论文]. 北京: 中国石油大学(北京), 2016

    (Xiao Cong. Study on multi-scale seepage model and productivity evaluation of shale gas reservoir. [Master Thesis]. Beijing: China University of Petroleum (Beijing), 2016 (in Chinese))
    [29] 任文希. 考虑多组分渗流影响的页岩气压裂水平井产能模型研究. [博士论文]. 中国石油大学(北京), 2018

    (Ren Wenxi. Productivity model of fractured horizontal Wells in shale gas with consideration of multi-component seepage. [PhD Thesis]. Beijing: China University of Petroleum (Beijing), 2018 (in Chinese))
    [30] 吴明录, 丁明才. 分形离散裂缝页岩气藏多级压裂水平井数值试井模型. 中国石油大学学报(自然科学版), 2020, 44(3): 98-104 (Wu Minglu, Ding Mingcai. Numerical well test model of multi-stage fractured horizontal well in fractal shale gas reservoir with discrete fractures. Journal of China University of Petroleum (Natural Science Edition), 2020, 44(3): 98-104 (in Chinese)
    [31] 郭少斌, 王子龙, 马啸. 中国重点地区二叠系海陆过渡相页岩气勘探前景. 石油实验地质, 2021, 43(3): 377-385 (Guo Shaobin, Wang Zilong, Ma Xiao. Shale gas exploration prospect of permian transitional facies in key areas of China. Experimental Petroleum Geology, 2021, 43(3): 377-385 (in Chinese)
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  122
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 录用日期:  2021-08-09
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回