EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多相流动的光滑粒子流体动力学方法研究综述

陈飞国 葛蔚

陈飞国, 葛蔚. 多相流动的光滑粒子流体动力学方法研究综述. 力学学报, 2021, 53(9): 2357-2373 doi: 10.6052/0459-1879-21-270
引用本文: 陈飞国, 葛蔚. 多相流动的光滑粒子流体动力学方法研究综述. 力学学报, 2021, 53(9): 2357-2373 doi: 10.6052/0459-1879-21-270
Chen Feiguo, Ge Wei. A review of smoothed particle hydrodynamics family methods for multiphase flow. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2357-2373 doi: 10.6052/0459-1879-21-270
Citation: Chen Feiguo, Ge Wei. A review of smoothed particle hydrodynamics family methods for multiphase flow. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2357-2373 doi: 10.6052/0459-1879-21-270

多相流动的光滑粒子流体动力学方法研究综述

doi: 10.6052/0459-1879-21-270
基金项目: 国家自然科学基金 (92034302), 国防基础科研科学挑战专题 (TZ2016001), 国家数值风洞工程 (NNW2019ZT2-B03), 国家科技重大专项 (2017-I-0004-0005)和中国科学院绿色过程制造创新研究院自主部署 (IAGM-2019-A03)资助项目
详细信息
    作者简介:

    陈飞国, 副研究员, 主要研究方向: 多相流模拟. E-mail: fgchen@ipe.ac.cn

  • 中图分类号: O359

A REVIEW OF SMOOTHED PARTICLE HYDRODYNAMICS FAMILY METHODS FOR MULTIPHASE FLOW

  • 摘要: 光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)具有粒子方法的无网格和全拉格朗日特征, 适用于具有界面大变形、不连续性和多物理场的多相流的高精度模拟. SPH方法模拟多相流已有大量报道, 具体的实现方式也大不相同. 本文首先阐述了采用SPH方法模拟流体的基本控制方程, 以及求解过程中需要考虑的流体压力求解、表面张力、固体边界等问题. 整理和总结了基于SPH方法进行多相流模拟的主要实现方式: (1)双流体模型的拉格朗日求解器: 两相离散为两组独立SPH粒子, 并用显式相间作用耦合两相; (2)多相SPH方法: SPH方法对多相流模拟的自然延伸, 相间作用由SPH参数隐式描述; (3) SPH与其他离散方法的耦合: 差异较大的两相各自采用不同离散方法, 发挥不同拉格朗日方法的优点; (4) SPH和基于网格方法的耦合: 网格方法处理简单的单相流动主体, 获得精度和效率间的平衡. 另外, 还在模拟参数物理化等方面论述了与SPH方法模拟多相流相关的一些改进和修正方法, 并在最后讨论和建议了提高多相流SPH模拟效率和精度的措施.

     

  • 图  1  SPH粒子近似

    Figure  1.  Schematic illustration of SPH particle approximation

    图  2  分子在界面上的相互作用

    Figure  2.  Schematic illustration of the interaction of molecules at the interface

    图  3  边界粒子模型

    Figure  3.  Schematic illustration of solid virtual particles

    图  4  镜像粒子模型

    Figure  4.  Schematic illustration of image particles

    图  5  动态粒子模型

    Figure  5.  Schematic illustration of dynamics particles

    图  6  边界属性定义示意

    Figure  6.  Schematic of boundary property definitions

    图  7  躺滴示意

    Figure  7.  Profile of a sessile drop

    图  8  不同液滴半径下的液滴中心压力

    Figure  8.  Pressure at the center of drops for various drop radii

  • [1] Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375-389 doi: 10.1093/mnras/181.3.375
    [2] Lucy LB. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 1977, 82(12): 1013-1024
    [3] Monaghan JJ. Smoothed particle hydrodynamics. Reports on Progress in Physics, 2005, 68(8): 1703-1759 doi: 10.1088/0034-4885/68/8/R01
    [4] Cleary PW, Prakash M, Ha J, et al. Smooth particle hydrodynamics: status and future potential. Progress in Computational Fluid Dynamics, 2007, 7(2-4): 70-90
    [5] Gotoh H, Khayyer A. On the state-of-the-art of particle methods for coastal and ocean engineering. Coastal Engineering Journal, 2018, 60(1): 79-103 doi: 10.1080/21664250.2018.1436243
    [6] Koumoutsakos P. Multiscale flow simulations using particles. Annual Review of Fluid Mechanics, 2005, 37: 457-487 doi: 10.1146/annurev.fluid.37.061903.175753
    [7] Li SF, Liu WK. Meshfree and particle methods and their applications. Applied Mechanics Reviews, 2002, 55(1): 1-34 doi: 10.1115/1.1431547
    [8] Liu GR, Liu MB. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, 2003.
    [9] Liu MB, Liu GR. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76 doi: 10.1007/s11831-010-9040-7
    [10] Monaghan JJ. Smoothed particle hydrodynamics. Annual Reviews in Astronomy and Astrophysics, 1992, 30(1): 543-574 doi: 10.1146/annurev.aa.30.090192.002551
    [11] Monaghan JJ. Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 2011, 44(1): 323-346
    [12] Monaghan JJ, Kocharyan A. SPH simulation of multi-phase flow. Computer Physics Communications, 1995, 87(1): 225-235
    [13] Shadloo MS, Oger G, Le Touzé D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Computers & Fluids, 2016, 136: 11-34
    [14] Violeau D, Rogers BD. Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. Journal of Hydraulic Research, 2016, 54(1): 1-26 doi: 10.1080/00221686.2015.1119209
    [15] Wang ZB, Chen R, Wang H, et al. An overview of smoothed particle hydrodynamics for simulating multiphase flow. Applied Mathematical Modelling, 2016, 40(23): 9625-9655
    [16] Ye T, Pan DY, Huang C, et al. Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications. Physics of Fluids, 2019, 31(1): 11301 doi: 10.1063/1.5068697
    [17] Khairi MAW, Rozainy MR, Ikhsan J. Smoothed particle hydrodynamics simulation for debris flow: a review. IOP Conference Series: Materials Science and Engineering, 2020, 864: 12045 doi: 10.1088/1757-899X/864/1/012045
    [18] Moreira AB, Leroy A, Violeau D, et al. Overview of large-scale smoothed particle hydrodynamics modeling of dam hydraulics. Journal of Hydraulic Engineering, 2020, 146(2): 3119001 doi: 10.1061/(ASCE)HY.1943-7900.0001658
    [19] Lind SJ, Rogers BD, Stansby PK. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 2241(476): 20190801
    [20] Yang PY, Huang C, Zhang ZL, et al. Simulating natural convection with high rayleigh numbers using the smoothed particle hydrodynamics method. International Journal of Heat and Mass Transfer, 2021, 166: 120758 doi: 10.1016/j.ijheatmasstransfer.2020.120758
    [21] Breinlinger T, Polfer P, Hashibon A, et al. Surface tension and wetting effects with smoothed particle hydrodynamics. Journal of Computational Physics, 2013, 243: 14-27 doi: 10.1016/j.jcp.2013.02.038
    [22] Koch R, Braun S, Wieth L, et al. Prediction of primary atomization using smoothed particle hydrodynamics. European Journal of Mechanics B Fluids, 2017, 61: 271-278 doi: 10.1016/j.euromechflu.2016.10.007
    [23] Li L, Shen LM, Nguyen GD, et al. A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Computational Mechanics, 2018, 62(5): 1071-1085 doi: 10.1007/s00466-018-1551-3
    [24] Ray M, Yang XF, Kong S, et al. High-fidelity simulation of drop collision and vapor–liquid equilibrium of van der Waals fluids. Proceedings of the Combustion Institute, 2017, 36(2): 2385-2392 doi: 10.1016/j.proci.2016.06.018
    [25] Robinson M, Ramaioli M, Luding S. Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation. International Journal of Multiphase Flow, 2014, 59: 121-134 doi: 10.1016/j.ijmultiphaseflow.2013.11.003
    [26] Szewc K, Pozorski J, Minier JP. Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics. International Journal of Multiphase Flow, 2013, 50: 98-105 doi: 10.1016/j.ijmultiphaseflow.2012.11.004
    [27] Tartakovsky A, Meakin P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Physical Review E, 2005, 72(2): 26301
    [28] Tong MM, Browne DJ. An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. International Journal of Heat and Mass Transfer, 2014, 73: 284-292 doi: 10.1016/j.ijheatmasstransfer.2014.01.064
    [29] Zhou GZ, GeW, Li JH. A revised surface tension model for macro-scale particle methods. Powder Technology, 2008, 183(1): 21-26 doi: 10.1016/j.powtec.2007.11.024
    [30] Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. San Diego: Academic Press, 1994.
    [31] Ishii M, Mishima K. Two-fluid model and hydrodynamic constitutive relations. Nuclear Engineering and Design, 1984, 82(2): 107-126
    [32] Stewart HB. Stability of two-phase flow calculation using two-fluid models. Journal of Computational Physics, 1979, 33(2): 259-270 doi: 10.1016/0021-9991(79)90020-2
    [33] Yang XF, Liu MB, Peng SL. Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Computers & Fluids, 2014, 92: 199-208
    [34] Monaghan JJ. Simulating free surface flows with SPH. Journal of Computational Physics, 1994, 110(2): 399-406 doi: 10.1006/jcph.1994.1034
    [35] Batchelor GK. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
    [36] Liu MB, Liu GR. Meshfree particle simulation of micro channel flows with surface tension. Computational Mechanics, 2005, 35(5): 332-341 doi: 10.1007/s00466-004-0620-y
    [37] Morris JP. Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 2000, 33(3): 333-353 doi: 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
    [38] Silbey RJ, Alberty RA, Bawendi MG. Physical Chemistry. Wiley, 2004: 944
    [39] Liu MB, Liu GR, Lam KY. Constructing smoothing functions in smoothed particle hydrodynamics with applications. Journal of Computational and Applied Mathematics, 2003, 155(2): 263-284 doi: 10.1016/S0377-0427(02)00869-5
    [40] Monaghan JJ, Pongracic H. Artificial viscosity for particle methods. Applied Numerical Mathematics, 1985, 1(3): 187-194 doi: 10.1016/0168-9274(85)90015-7
    [41] Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2): 335-354 doi: 10.1016/0021-9991(92)90240-Y
    [42] Lind SJ, Xu R, Stansby PK, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics, 2012, 231(4): 1499-1523 doi: 10.1016/j.jcp.2011.10.027
    [43] Nomura K, Koshizuka S, Oka Y, et al. Numerical analysis of droplet breakup behavior using particle method. Journal of Nuclear Science and Technology, 2001, 38(12): 1057-1064 doi: 10.1080/18811248.2001.9715136
    [44] Zhang MY. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method. Journal of Computational Physics, 2010, 229(19): 7238-7259 doi: 10.1016/j.jcp.2010.06.010
    [45] Liu WB, Ma DJ, Zhang MY, et al. A new surface tension formulation in smoothed particle hydrodynamics for free-surface flows. Journal of Computational Physics, 2021, 439: 110203 doi: 10.1016/j.jcp.2021.110203
    [46] Zhang MY, Zhang H, Zheng LL. Simulation of droplet spreading, splashing and solidification using smoothed particle hydrodynamics method. International Journal of Heat and Mass Transfer, 2008, 51(13): 3410-3419
    [47] 苏铁熊, 马理强, 刘谋斌等. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 64702-64707 (Su Tiexiong, Ma Liqiang, Liu Moubin, et al. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 64702-64707 (in Chinese) doi: 10.7498/aps.62.064702
    [48] Nugent S, Posch HA. Liquid drops and surface tension with smoothed particle applied mechanics. Physical Review E, 2000, 62(4): 4968-4975 doi: 10.1103/PhysRevE.62.4968
    [49] Morris JP, Fox PJ, Zhu Y. Modeling Low reynolds number incompressible flows using SPH. Journal of Computational Physics, 1997, 136(1): 214-226 doi: 10.1006/jcph.1997.5776
    [50] Gong K, Liu H, Wang BL. Water entry of a wedge based on SPH Model with an improved boundary treatment. Journal of Hydrodynamics, 2009, 21(6): 750-757 doi: 10.1016/S1001-6058(08)60209-7
    [51] Bierbrauer F, Bollada PC, Phillips TN. A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics. Computer Methods in Applied Mechanics and Engineering, 2009, 198(41): 3400-3410
    [52] Gómez-Gesteira M, Dalrymple RA. Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2004, 130(2): 63-69 doi: 10.1061/(ASCE)0733-950X(2004)130:2(63)
    [53] Ferrand M, Laurence DR, Rogers BD, et al. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. International Journal for Numerical Methods in Fluids, 2012, 71(4): 446-472
    [54] Kulasegaram S, Bonet J, Lewis RW, et al. A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Computational Mechanics, 2004, 33(4): 316-325 doi: 10.1007/s00466-003-0534-0
    [55] Mayrhofer A, Ferrand M, Kassiotis C, et al. Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D. Numerical Algorithms, 2015, 68(1): 15-34 doi: 10.1007/s11075-014-9835-y
    [56] Cummins SJ, Rudman M. An SPH projection method. Journal of Computational Physics, 1999, 152(2): 584-607 doi: 10.1006/jcph.1999.6246
    [57] Ellero M, Serrano M, Español P. Incompressible smoothed particle hydrodynamics. Journal of Computational Physics, 2007, 226(2): 1731-1752 doi: 10.1016/j.jcp.2007.06.019
    [58] Hu XY, Adams NA. An incompressible multi-phase SPH method. Journal of Computational Physics, 2007, 227(1): 264-278 doi: 10.1016/j.jcp.2007.07.013
    [59] Szewc K, Pozorski J, Minier JP. Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method. International Journal for Numerical Methods in Engineering, 2012, 92(4): 343-369 doi: 10.1002/nme.4339
    [60] Cornelis J, Ihmsen M, Peer A, et al. IISPH-FLIP for incompressible fluids. Computer Graphics Forum, 2014, 33(2): 255-262 doi: 10.1111/cgf.12324
    [61] Aly AM. Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics. International Journal of Numerical Methods for Heat & Fluid Flow, 2015, 25(3): 513-533
    [62] Lind SJ, Stansby PK, Rogers BD. Incompressible–compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH). Journal of Computational Physics, 2016, 309: 129-147 doi: 10.1016/j.jcp.2015.12.005
    [63] Koshizuka S. A particle method for incompressible viscous flow with fluid fragmentation. Computational Fluid Dynamics Journal, 1995, 4(1): 29-46
    [64] Koshizuka S, Oka Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering, 1996, 123(3): 421-434 doi: 10.13182/NSE96-A24205
    [65] Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit method. International Journal for Numerical Methods in Fluids, 1998, 26(7): 751-769 doi: 10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
    [66] Yoon HY, Koshizuka S, Oka Y. A Mesh-free numerical method for direct simulation of gas-liquid phase interface. Nuclear Science and Engineering, 1999, 133(2): 192-200 doi: 10.13182/NSE99-A2081
    [67] Yoon HY, Koshizuka S, Oka Y. Direct calculation of bubble growth, departure, and rise in nucleate pool boiling. International Journal of Multiphase Flow, 2001, 27(2): 277-298 doi: 10.1016/S0301-9322(00)00023-9
    [68] Ataie-Ashtiani B, Farhadi L. A stable moving-particle semi-implicit method for free surface flows. Fluid Dynamics Research, 2006, 38(4): 241-256 doi: 10.1016/j.fluiddyn.2005.12.002
    [69] Khayyer A, Gotoh H. Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure. Coastal Engineering, 2009, 56(4): 419-440 doi: 10.1016/j.coastaleng.2008.10.004
    [70] Kondo M, Koshizuka S. Improvement of stability in moving particle semi-implicit method. International Journal for Numerical Methods in Fluids, 2011, 65(6): 638-654 doi: 10.1002/fld.2207
    [71] Shao SD, Gotoh H. Turbulence particle models for tracking free surfaces. Journal of Hydraulic Research, 2005, 43(3): 276-289 doi: 10.1080/00221680509500122
    [72] 张凯, 孙中国, 席光. 移动粒子半隐式法核函数特征对压力求解稳定性的影响. 西安交通大学学报, 2019, 53(9): 1-6 (Zhang Kai, Sun Zhongguo, Xi Guang. Influence of the kernel function characteristics on the stability of pressure solution of moving particle semi-implicit method. Journal of Xi'an Jiaotong University, 2019, 53(9): 1-6 (in Chinese)
    [73] Ge W, Li JH. Macro-scale pseudo-particle modeling for particle-fluid systems. Chinese Science Bulletin, 2001, 46(18): 1503-1507 doi: 10.1007/BF02900568
    [74] Ge W, Li JH. Simulation of particle–fluid systems with macro-scale pseudo-particle modeling. Powder Technology, 2003, 137(1): 99-108
    [75] Ma JS, Ge W, Wang XW, et al. High-resolution simulation of gas–solid suspension using macro-scale particle methods. Chemical Engineering Science, 2006, 61(21): 7096-7106 doi: 10.1016/j.ces.2006.07.042
    [76] Xiong QG, Deng LJ, Wang W, et al. SPH method for two-fluid modeling of particle–fluid fluidization. Chemical Engineering Science, 2011, 66(9): 1859-1865 doi: 10.1016/j.ces.2011.01.033
    [77] Xiong QG, Li B, Chen FG, et al. Direct numerical simulation of sub-grid structures in gas-solid flow−GPU implementation of macro-scale pseudo-particle modeling. Chemical Engineering Science, 2010, 65(19): 5356-5365 doi: 10.1016/j.ces.2010.06.035
    [78] Monaghan JJ. Implicit SPH drag and dusty gas dynamics. Journal of Computational Physics, 1997, 138(2): 801-820 doi: 10.1006/jcph.1997.5846
    [79] Laibe G, Price DJ. Dusty gas with smoothed particle hydrodynamics—I. Algorithm and Test Suite. Monthly Notices of the Royal Astronomical Society, 2012, 420(3): 2345-2364 doi: 10.1111/j.1365-2966.2011.20202.x
    [80] Hu XY, Adams NA. A constant-density approach for incompressible multi-phase SPH. Journal of Computational Physics, 2009, 228(6): 2082-2091 doi: 10.1016/j.jcp.2008.11.027
    [81] Shadloo MS, Yildiz M. Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics. International Journal for Numerical Methods in Engineering, 2011, 87(10): 988-1006 doi: 10.1002/nme.3149
    [82] Shao SD. Incompressible smoothed particle hydrodynamics simulation of multifluid flows. International Journal for Numerical Methods in Fluids, 2012, 69(11): 1715-1735 doi: 10.1002/fld.2660
    [83] Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics, 2003, 191(2): 448-475 doi: 10.1016/S0021-9991(03)00324-3
    [84] Das AK, Das PK. Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation. Chemical Engineering Science, 2009, 64(10): 2281-2290 doi: 10.1016/j.ces.2009.01.053
    [85] Szewc K, Tanière A, Pozorski J, et al. A study on application of smoothed particle hydrodynamics to multi-phase flows. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(6): 383
    [86] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 207-221 (Sun Pengnan, Li Yunbo, Ming Furen. Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 207-221 (in Chinese)
    [87] 王平平, 张阿漫, 孟子飞. 一种改进的适用于多相流SPH模拟的粒子位移修正算法. 科学通报, 2020, 65(8): 729-739 (Wang Pingping, Zhang Aman, Meng Zifei. An improved particle shifting algorithm for multiphase flows in SPH method. Chinese Science Bulletin, 2020, 65(8): 729-739 (in Chinese) doi: 10.1360/TB-2019-0540
    [88] Akbari H. An improved particle shifting technique for incompressible smoothed particle hydrodynamics methods. International Journal for Numerical Methods in Fluids, 2019, 90(12): 603-631 doi: 10.1002/fld.4737
    [89] Akinci N, Ihmsen M, Akinci G, et al. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics, 2012, 31(4): 1-8
    [90] Tofighi N, Ozbulut M, Rahmat A, et al. An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids. Journal of Computational Physics, 2015, 297: 207-220 doi: 10.1016/j.jcp.2015.05.015
    [91] Fourtakas G, Rogers BD. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU). Advances in Water Resources, 2016, 92: 186-199 doi: 10.1016/j.advwatres.2016.04.009
    [92] Potapov AV, Hunt ML, Campbell CS. Liquid–solid flows using smoothed particle hydrodynamics and the discrete element method. Powder Technology, 2001, 116(2): 204-213
    [93] Huang YJ, Nydal OJ. Coupling of discrete-element method and smoothed particle hydrodynamics for liquid-solid flows. Theoretical and Applied Mechanics Letters, 2012, 2(1): 12002 doi: 10.1063/2.1201202
    [94] El Shamy U, Sizkow SF. Coupled smoothed particle hydrodynamics-discrete element method simulations of soil liquefaction and its mitigation using gravel drains. Soil Dynamics and Earthquake Engineering, 2021, 140: 106460 doi: 10.1016/j.soildyn.2020.106460
    [95] Robb DM, Gaskin SJ, Marongiu J. SPH-DEM model for free-surface flows containing solids applied to river ice jams. Journal of Hydraulic Research, 2016, 54(1): 27-40 doi: 10.1080/00221686.2015.1131203
    [96] Liu L, Zhang P, Xie P, et al. Coupling of dilated polyhedral DEM and SPH for the simulation of rock dumping process in waters. Powder Technology, 2020, 374: 139-151 doi: 10.1016/j.powtec.2020.06.095
    [97] Ji SY, Chen XD, Liu L, et al. Coupled DEM-SPH method for interaction between dilated polyhedral particles and fluid. Mathematical Problems in Engineering, 2019, 2019: 4987801
    [98] Polwaththe-Gallage H, Saha SC, Sauret E, et al. A coupled SPH-DEM approach to model the interactions between multiple red blood cells in motion in capillaries. International Journal of Mechanics and Materials in Design, 2016, 12(4): 477-494 doi: 10.1007/s10999-015-9328-8
    [99] 陈飞国, 葛蔚. 耦合拟颗粒模型和光滑粒子流体动力学模拟气液流动(内部报告). 北京: 中国科学院过程工程研究所, 2021

    (Chen Feiguo, Ge Wei. Numerical modeling for gas-liquid flow with pseudo-particle model and smoothed particle hydrodynamics (Internal Report). Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2021 (in Chinese))
    [100] Ge W, Ma JS, Zhang JY, et al. Particle methods for multi-scale simulation of complex flows. Chinese Science Bulletin, 2005, 50(11): 1057-1069 doi: 10.1360/04wb0108
    [101] Ge W, Li JH. Macro-scale phenomena reproduced in microscopic systems--pseudo-particle modeling of fluidization. Chemical Engineering Science, 2003, 58(8): 1565-1585 doi: 10.1016/S0009-2509(02)00673-5
    [102] Marrone S, Di Mascio A, Le Touzé D. Coupling of smoothed particle hydrodynamics with finite volume method for free-surface flows. Journal of Computational Physics, 2016, 310: 161-180 doi: 10.1016/j.jcp.2015.11.059
    [103] Napoli E, De Marchis M, Gianguzzi C, et al. A coupled finite volume–smoothed particle hydrodynamics method for incompressible flows. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 674-693 doi: 10.1016/j.cma.2016.07.034
    [104] Deng LJ, Liu YN, Wang W, et al. A two-fluid smoothed particle hydrodynamics (TF-SPH) method for gas–solid fluidization. Chemical Engineering Science, 2013, 99: 89-101 doi: 10.1016/j.ces.2013.05.047
    [105] Feng Y, Wang JM, Liu FH. Numerical simulation of single particle acceleration process by SPH coupled FEM for abrasive waterjet cutting. International Journal of Advanced Manufacturing Technology, 2012, 59(1): 193-200
    [106] Zhang ZL, Walayat K, Chang JZ, et al. Meshfree modeling of a fluid-particle two-phase flow with an improved SPH method. International Journal for Numerical Methods in Engineering, 2018, 116(8): 530-569 doi: 10.1002/nme.5935
    [107] Fourey G, Hermange C, Le Touzé D, et al. An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Computer Physics Communications, 2017, 217: 66-81 doi: 10.1016/j.cpc.2017.04.005
    [108] Zhang ZC, Qiang HF, Gao WR. Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Engineering Structures, 2011, 33(1): 255-264 doi: 10.1016/j.engstruct.2010.10.020
    [109] Long T, Huang C, Hu D, et al. Coupling edge-based smoothed finite element method with smoothed particle hydrodynamics for fluid structure interaction problems. Ocean Engineering, 2021, 225: 108772 doi: 10.1016/j.oceaneng.2021.108772
    [110] Long T, Yang PY, Liu MB. A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems. International Journal of Mechanical Sciences, 2020, 174: 105558 doi: 10.1016/j.ijmecsci.2020.105558
    [111] Chen JK, Beraun JE, Jih CJ. An improvement for tensile instability in smoothed particle hydrodynamics. Computational Mechanics, 1999, 23(4): 279-287 doi: 10.1007/s004660050409
    [112] Tartakovsky AM, Meakin P. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability. Journal of Computational Physics, 2005, 207(2): 610-624 doi: 10.1016/j.jcp.2005.02.001
    [113] Liu MB, Xie WP, Liu GR. Modeling incompressible flows using a finite particle method. Applied Mathematical Modelling, 2005, 29(12): 1252-1270 doi: 10.1016/j.apm.2005.05.003
    [114] Liu MB, Liu GR. Restoring particle consistency in smoothed particle hydrodynamics. Applied Numerical Mathematics, 2006, 56(1): 19-36 doi: 10.1016/j.apnum.2005.02.012
    [115] Zhang ZL, Liu MB. A decoupled finite particle method for modeling incompressible flows with free surfaces. Applied Mathematical Modelling, 2018, 60: 606-633 doi: 10.1016/j.apm.2018.03.043
    [116] Schuessler I, Schmitt D. Comments on smoothed particle hydrodynamics. Astronomy and Astrophysics, 1981, 97: 373-379
    [117] Swegle JW, Hicks DL, Attaway SW. Smoothed particle hydrodynamics stability analysis. Journal of Computational Physics, 1995, 116(1): 123-134 doi: 10.1006/jcph.1995.1010
    [118] Monaghan JJ. SPH without a tensile instability. Journal of Computational Physics, 2000, 159(2): 290-311 doi: 10.1006/jcph.2000.6439
    [119] Sun PN, Colagrossi A, Marrone S, et al. Multi-resolution delta-plus-SPH with tensile instability control: Towards high Reynolds number flows. Computer Physics Communications, 2018, 224: 63-80 doi: 10.1016/j.cpc.2017.11.016
    [120] Sun PN, Colagrossi A, Marrone S, et al. The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 25-49 doi: 10.1016/j.cma.2016.10.028
    [121] Antuono M, Colagrossi A, Marrone S. Numerical diffusive terms in weakly-compressible SPH schemes. Computer Physics Communications, 2012, 183(12): 2570-2580 doi: 10.1016/j.cpc.2012.07.006
    [122] Xu ZJ, Meakin P, Tartakovsky AM. Diffuse-interface model for smoothed particle hydrodynamics. Physical Review E, 2009, 79(3): 36702 doi: 10.1103/PhysRevE.79.036702
    [123] Monaghan JJ. Smoothed particle hydrodynamic simulations of shear flow. Monthly Notices of the Royal Astronomical Society, 2006, 365(1): 199-213 doi: 10.1111/j.1365-2966.2005.09704.x
    [124] Tartakovsky AM, Panchenko A. Pairwise force smoothed particle hydrodynamics model for multiphase flow: Surface tension and contact line dynamics. Journal of Computational Physics, 2016, 305: 1119-1146 doi: 10.1016/j.jcp.2015.08.037
    [125] Monaghan JJ. On the problem of penetration in particle methods. Journal of Computational Physics, 1989, 82(1): 1-15 doi: 10.1016/0021-9991(89)90032-6
    [126] Cui XD, Habashi WG, Casseau V. MPI parallelisation of 3D multiphase smoothed particle hydrodynamics. International Journal of Computational Fluid Dynamics, 2020, 34(7-8): 610-621 doi: 10.1080/10618562.2020.1785436
    [127] Plimpton S, Attaway S, Hendrickson B, et al. Parallel transient dynamics simulations: Algorithms for contact detection and smoothed particle hydrodynamics. Journal of Parallel and Distributed Computing, 1998, 50(1): 104-122
    [128] Morikawa D, Senadheera H, Asai M. Explicit incompressible smoothed particle hydrodynamics in a multi-GPU environment for large-scale simulations. Computational Particle Mechanics, 2021, 8(3): 493-510 doi: 10.1007/s40571-020-00347-0
    [129] Schäfer CM, Wandel OJ, Burger C, et al. A versatile smoothed particle hydrodynamics code for graphic cards. Astronomy and Computing, 2020, 33: 100410 doi: 10.1016/j.ascom.2020.100410
    [130] Crespo AC, Dominguez JM, Barreiro A, et al. GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed particle hydrodynamics methods. Plos One, 2011, 6(6): e20685 doi: 10.1371/journal.pone.0020685
    [131] Rustico E, Bilotta G, Hérault A, et al. Advances in multi-GPU smoothed particle hydrodynamics simulations. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1): 43-52 doi: 10.1109/TPDS.2012.340
    [132] Crespo AJC, Domínguez JM, Rogers BD, et al. DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Computer Physics Communications, 2015, 187: 204-216 doi: 10.1016/j.cpc.2014.10.004
    [133] Valdez-Balderas D, Domínguez JM, Rogers BD, et al. Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. Journal of Parallel and Distributed Computing, 2013, 73(11): 1483-1493 doi: 10.1016/j.jpdc.2012.07.010
    [134] Domínguez JM, Crespo AJC, Valdez-Balderas D, et al. New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Computer Physics Communications, 2013, 184(8): 1848-1860 doi: 10.1016/j.cpc.2013.03.008
    [135] Ming FR, Zhang AM, Cheng H, et al. Numerical simulation of a damaged ship cabin flooding in transversal waves with smoothed particle hydrodynamics method. Ocean Engineering, 2018, 165: 336-352 doi: 10.1016/j.oceaneng.2018.07.048
    [136] Harada T, Koshizuka S, Kawaguchi Y. Smoothed particle hydrodynamics on GPUs. Computer Graphics International, SBC Petropolis, 2007
  • 加载中
图(8)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  120
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 录用日期:  2021-08-10
  • 网络出版日期:  2021-08-11
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回