CONSTITUTIVE MODEL FOR K0 OVERCONSOLIDATED STRUCTURE CLAY
-
摘要: K0固结黏土在自然界广泛分布, 其通常同时具有超固结性与天然结构性, 而K0超固结性又与K0正常固结性质存在很大差异. 为了有效的描述K0超固结性质, 在结构性模型基础上, 做了如下三点改进, 使得原模型拓展为同时考虑K0超固结特性与天然结构性影响的本构模型. (1)引入相对应力比来描述屈服面, 并引入初始各向异性转轴参量ξ来表达初始各向异性对屈服面在p-q空间的位置影响. (2)基于给定的屈服面方程, 推导得到变相应力比参量, 并将变相应力比引入到统一硬化参数中, 利用统一硬化参数可以有效描述初始各向异性固结黏土在剪切加载下的剪缩与剪胀, 应变硬化及软化现象. (3)引入反映结构性胶结强度性质的胶结参量pe, 并给出pe随塑性偏应变的衰减演化方程, 利用胶结参量可描述结构性黏土的剪胀特性. 预测与试验结果对比表明, 所提的K0超固结结构性模型可有效描述K0超固结黏土的刚度提高效应, 黏土的包辛格效应, 结构性黏土胶结强度的损失现象以及结构性黏土的应变软化现象. 证明了所提模型的适用性以及合理性.Abstract: K0 consolidated clay is widely distributed in nature. It usually has both overconsolidation property and natural structural property, and it is a significant difference for the property of overconsolidation of K0 to the normal consolidation of K0 clay. In order to effectively describe the overconsolidation properties of K0 consolidated clay, three improvements were made on the basis of the natural structure consolidated model for clay, so that the original model can be extended to a constitutive model that consider both the properties of K0 overconsolidation clay and the effects of natural structures for natural clay. (1) The relative stress ratio is introduced into the yield surface equation to describe the yield property, and the initial anisotropic consolidation stress ratio parameter ξ is introduced into the yield surface equation to express the influence of the initial anisotropy on the position of the yield surface in p-q space. (2) Based on the given yield surface equation, the phase transformation stress ratio parameter was derived, and the phase transformation stress ratio was introduced into the unified hardening parameter. The unified hardening parameter can effectively describe both the initial anisotropic shearing behavior and the dilatancy behavior, strain hardening and softening phenomenon for initial anisotropic consolidated clay. (3) The cementation parameter pe, which reflects the structural cementation, is introduced into the yield surface equation and the decay evolution equation of pe with deviatoric plastic strain is given. The dilatancy properties of structural clay can be described by using the cementation parameter. The comparison between the prediction and the test results shows that the proposed K0 consolidation model can effectively describe the stiffness enhancement effect of K0 overconsolidated clay, the Bauschinger effect of clay, the cementation strength loss phenomenon and the strain softening phenomenon of structural clay. The applicability and rationality of the proposed model are proved.
-
Key words:
- structure /
- overconsolidated clay /
- dilatancy /
- strain softening /
- cementation strength
-
表 1 黏土材料参数
Table 1. Material parameters for clay
Clay type Ms λ κ ζ ω pe(MPa) Pm(MPa) Pi(MPa) α Pappadai 1.3 0.39 0.015 1.5 0 2.8 0.012 0.3 0 Cement clay1 1.3 0.93 0.12 1.5 0 0.08 0.002 0.05 0 Cement clay2 1.3 0.98 0.02 1.5 0 0.3 0.002 0.13 0 Cement clay3 1.3 1.18 0.011 1.5 0 3.5 0.002 1.5 0 Ariake 1.26 0.22 0.01 1.5 0.5 3.06 0.002 0.13 0.3 LCT 1.1 0.56 0.01 1.5 1 0.06 0.01 0.02 0.01 Pure black 0.85 0.13 0.02 0 1 0.001 0.001 0.01 0.3 -
[1] 沈珠江. 土体结构性的数学模型——21 世纪土力学的核心问题. 岩土工程学报, 1996, 18(1): 95-97 (Shen Zhujiang. Mathematical model for soil structure——The core topic of soil mechanics in the 21st century. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97 (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.01.015 [2] 高彦斌, 楼康明. 上海软黏土强度固有各向异性. 同济大学学报(自然科学版), 2013, 41(11): 1658-1663 (Gao Yanbin, Lou Kangming. Strength anisotropy of Shanghai soft clay induced by inherent fabric. Journal of Tongji University(Natural science) , 2013, 41(11): 1658-1663 (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.11.008 [3] 高彦斌. 两种K0固结土样的强度比及其各向异性. 同济大学学报(自然科学版), 2019, 47(5): 634-639 (Gao Yanbin. Normalized strength and strength anisotropy of two kinds of K0 consolidated specimens. Journal of Tongji University(Natural science) , 2019, 47(5): 634-639 (in Chinese) [4] 伍婷玉, 郭林, 蔡袁强等. 交通荷载应力路径下K0固结软黏土变形特性试验研究. 岩土工程学报, 2017, 39(5): 859-868 (Wu Tingyu, Guo Lin, Cai Yuanqiang, et al. Deformation behavior of K0-consolidated soft clay under traffic load-induced stress paths. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 859-868 (in Chinese) doi: 10.11779/CJGE201705010 [5] 姚仰平. UH模型系列研究. 岩土工程学报, 2015, 37(2): 193-217 (Yao Yangping. Advanced UH models for soils. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217 (in Chinese) doi: 10.11779/CJGE201502001 [6] 祝恩阳, 姚仰平. 结构性土UH模型. 岩土力学, 2015, 36(11): 3101-3110 (Zhu Enyang, Yao Yangping. A UH constitutive model for structured soils. Rock and Soil Mechanics, 2015, 36(11): 3101-3110 (in Chinese) [7] Zhu EY, YAO YP. Structured UH model for clays. Transportation Geotechnics, 2015, 3: 68-79 [8] Yao YP, Hou W, Zhou AN. UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique, 2009, 59(5): 451-469 doi: 10.1680/geot.2007.00029 [9] Yao YP, Hou W, Zhou AN. Constitutive model for overconsolidated clays. Science China-Technological Sciences, 2008, 51(2): 179-191 doi: 10.1007/s11431-008-0011-2 [10] Yao YP, Gao ZW, Zhao JD, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope. Journal of Geotechnical and Geoenvironmental Engineering(ASCE) , 2012, 138(7): 860-868 doi: 10.1061/(ASCE)GT.1943-5606.0000649 [11] Yao YP, Kong YX. Extended UH model: three-dimensional unified hardening model for anisotropic clays. Journal of Engineering Mechanics, 2011, 138(7): 853-866 [12] Liu MD, Carter JP. Virgin compression of structured soils. Géotechnique, 1999, 49(1): 43-57 [13] Liu MD, Carter JP. Modelling the destructuring of soils during virgin compression. Géotechnique, 2000, 50(4): 479-483 [14] Liu MD, Carter JP, DESAI CS, et al. Analysis of the compression of structured soils using the disturbed state concept. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(8): 723-735 doi: 10.1002/1096-9853(200007)24:8<723::AID-NAG92>3.0.CO;2-V [15] 沈珠江. 结构性粘土的弹塑性损伤模型. 岩土工程学报, 1993, 15(3): 21-28 (Shen Zhujiang. An Elastoplastic damage model for cemented clays. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 21-28 (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.03.003 [16] 沈珠江. 结构性黏土的堆砌体模型. 岩土力学, 2000, 21(1): 1-4 (Shen Zhujiang. A masonry model for structured clays. Rock and Soil Mechanics, 2000, 21(1): 1-4 (in Chinese) doi: 10.3969/j.issn.1000-7598.2000.01.001 [17] 刘恩龙, 沈珠江. 结构性土压缩曲线的数学模拟. 岩土力学, 2006, 27(4): 615-620 (Liu Enlong, Shen Zhujiang. Modeling compression of structured soils. Rock and Soil Mechanics, 2006, 27(4): 615-620 (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.04.022 [18] 周 成, 沈珠江, 陈生水等. 结构性土的次塑性扰动状态模型. 岩土工程学报, 2004, 26(4): 435-439 (Zhou Cheng, Shen Zhujiang, Chen Shengshui, et al. A hypoplasticity disturbed state model for structured soils. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 435-439 (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.001 [19] Desai CS, Somasundaram S, Frantziskonis G. A hierarchical approach for constitutive modeling of geologic materials. International Journal for Numerical and Analytical Mechods in Geomechanics, 1986(10): 225-257 [20] Desai CS, Toth J. Disturbed state constitutive modeling based on stress-strain and nondestructive behavior. International Journal of Solids and Structures, 1996, 33(11): 1619-1650 doi: 10.1016/0020-7683(95)00115-8 [21] 孔令伟, 张先伟, 郭爱国等. 湛江强结构性黏土的三轴排水蠕变特征. 岩石力学与工程学报, 2011, 30(2): 365-372 (Kong Lingwei, Zhang Xianwei, Guo Aiguo, et al. Creep behavior of Zhanjiang Strong structured clay by drained triaxial test. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 365-372 (in Chinese) [22] 路德春, 韩佳月, 梁靖宇等. 横观各向同性黏土的非正交弹塑性本构模型. 岩石力学与工程学报, 2020, 39(4): 793-803 (Lu Dechun, Han Jiayue, Liang Jingyu, et al. Non-orthogonal elastoplastic constitutive model of transversely isotropic clay. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 793-803 (in Chinese) [23] 梁靖宇, 杜修力, 路德春等. 特征应力空间中土的分数阶临界状态模型. 岩土工程学报, 2019, 41(3): 581-587 (Liang Jingyu, Du Xiuli, LU Dechun, et al. Fractional order critical state model for soils in the characteristic stress space. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 581-587 (in Chinese) [24] Lu DC, Ma C, Du XL, et al. Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept. International Journal of Geomechanics, 2017, 17(2): 4016058 doi: 10.1061/(ASCE)GM.1943-5622.0000729 [25] Lu DC, Li XQ, Du XL, et al. A simple 3D elastoplastic constitutive model for soils based on the characteristic stress. Computers and Geotechnics, 2019, 109(5): 229-247 [26] Lu DC, Liang JY, Du XL, et al. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule. Computers and Geotechnics, 2019, 105(2): 277-290 [27] Balasubramanian AS, Hang ZM. Yielding of weathered Bankok clay. Soils and Foundations, 1980, 20(2): 1-15 doi: 10.3208/sandf1972.20.2_1 [28] Cotecchia F, Chandler RJ. A general framework for the mechanical behaviour of clays. Geotechnique, 2000, 50(4): 431-47 doi: 10.1680/geot.2000.50.4.431 [29] Horpibulsuk S, Miura N, Bergado DT. Undrained shear behaviour of cement admixed clay at high water content. Journal of Geotechnical and Geoenvironmental Engineering (ASCE) 2004;130(10): 1096–105. [30] Gens A. Stress-strain and strength characteristics of a low plasticity clay (PhD Thesis). 1982, Imperial College, London. [31] Biarez J, Hicher PY. Elementary Mechanics of Soil Behaviour: Saturated Remoulded Soils. Rotterdam, Brookfield, A. A. Balkema Press, 1994. -