EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K0超固结结构性黏土的本构模型

万征 曹伟 刘媛媛 张红芬

万征, 曹伟, 刘媛媛, 张红芬. K0超固结结构性黏土的本构模型. 力学学报, 待出版 doi: 10.6052/0459-1879-21-265
引用本文: 万征, 曹伟, 刘媛媛, 张红芬. K0超固结结构性黏土的本构模型. 力学学报, 待出版 doi: 10.6052/0459-1879-21-265
Wan Zheng, Cao Wei, Liu Yuanyuan, Zhang Hongfen. Constitutive model for k0 overconsolidated structure clay. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-21-265
Citation: Wan Zheng, Cao Wei, Liu Yuanyuan, Zhang Hongfen. Constitutive model for k0 overconsolidated structure clay. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-21-265

K0超固结结构性黏土的本构模型

doi: 10.6052/0459-1879-21-265
基金项目: 国家自然科学基金(42177170, 52004090), 河北省自然科学基金(E2021508031), 廊坊市科学技术研究与发展计划项目(2019013129), 中央高校基本科研业务费资助项目(3142018014)资助项目
详细信息
    作者简介:

    万征, 副研究员, 主要研究方向: 地下结构与土相互作用, 混凝土及土的本构关系. E-mail: zhengw111@126.com

CONSTITUTIVE MODEL FOR K0 OVERCONSOLIDATED STRUCTURE CLAY

  • 摘要: K0固结黏土在自然界广泛分布, 其通常同时具有超固结性与天然结构性, 而K0超固结性又与K0正常固结性质存在很大差异. 为了有效的描述K0超固结性质, 在结构性模型基础上, 做了如下三点改进, 使得原模型拓展为同时考虑K0超固结特性与天然结构性影响的本构模型. (1)引入相对应力比来描述屈服面, 并引入初始各向异性转轴参量ξ来表达初始各向异性对屈服面在p-q空间的位置影响. (2)基于给定的屈服面方程, 推导得到变相应力比参量, 并将变相应力比引入到统一硬化参数中, 利用统一硬化参数可以有效描述初始各向异性固结黏土在剪切加载下的剪缩与剪胀, 应变硬化及软化现象. (3)引入反映结构性胶结强度性质的胶结参量pe, 并给出pe随塑性偏应变的衰减演化方程, 利用胶结参量可描述结构性黏土的剪胀特性. 预测与试验结果对比表明, 所提的K0超固结结构性模型可有效描述K0超固结黏土的刚度提高效应, 黏土的包辛格效应, 结构性黏土胶结强度的损失现象以及结构性黏土的应变软化现象. 证明了所提模型的适用性以及合理性.

     

  • 图  1  p-q空间中的当前屈服面(px0)与结构性屈服面(p*x0)及参考屈服面($ {\bar p_{x0}} $)

    Figure  1.  Current yield surface(px0), structural yield surface(p*x0) and reference yield surface($ {\bar p_{x0}} $) in p-q space

    图  2  结构性与重塑土剪胀曲线对比图

    Figure  2.  Comparison of shear dilatancy between structural and remolded soils

    图  3  不同pe影响下的剪胀关系曲线

    Figure  3.  The dilatancy curves with the influence of different pe

    图  4  等方向固结下不同状态参量χ影响下的剪胀关系曲线

    Figure  4.  The dilatancy curves under the influence of different state parameters χ with isotropic consolidation

    图  5  不同水泥含量模拟结构性黏土三轴不排水剪切的有效应力路径试验曲线

    Figure  5.  Effective stress paths test curves of structural clay under triaxial undrained shear with different cement contents

    图  6  典型加载路径下应力比与偏应变关系曲线

    Figure  6.  Relationship curve between stress ratioes and deviatoric strain under typical loading path

    图  7  e-p空间中Pappadai黏土一维压缩测试与预测对比结果

    Figure  7.  Comparison of one-dimensional compression test and prediction results of Pappadai clay in e-p space

    图  8  e-p空间中三种水泥含量黏土的一维压缩测试与预测对比结果

    Figure  8.  One-dimensional compression test and prediction results of three kinds of clay with cement content in e-p space

    图  9  常规三轴压缩下Pappadai黏土的应力比与偏应变测试与预测结果对比

    Figure  9.  Comparison of prediction and test results of stress ratio versus deviatoric strain for Pappadai clay under conventional triaxial compression

    图  10  常规三轴压缩下Pappadai黏土的体应变与偏应变测试与预测结果对比

    Figure  10.  Comparison of prediction and test results of volume strain versus deviatoric strain for Pappadai clay under conventional triaxial compression

    图  11  常规三轴不排水剪切加载下Pappadai黏土的偏应力与偏应变测试与预测对比

    Figure  11.  Comparison of prediction and test results of deviatoric stress versus deviatoric strain for Pappadai clay under conventional undrained triaxial compression

    图  12  常规三轴不排水剪切加载下Pappadai黏土的孔隙水压力与偏应变测试与预测对比

    Figure  12.  Comparison of prediction and test results of pore water pressure versus deviatoric strain for Pappadai clay under conventional undrained triaxial compression

    图  13  常规三轴不排水剪切加载下Ariake黏土的偏应力与偏应变测试与预测对比

    Figure  13.  Comparison of prediction and test results of deviatoric stress versus deviatoric strain for Ariake clay under conventional undrained triaxial compression

    图  14  常规三轴不排水剪切加载下Ariake黏土的孔隙水压力与偏应变测试与预测对比

    Figure  14.  Comparison of prediction and test results of pore water pressure versus deviatoric strain for Ariake clay under conventional undrained triaxial compression

    图  15  小围压下常规三轴不排水剪切Ariake黏土的偏应力与偏应变测试与预测对比

    Figure  15.  Comparison of prediction and test results of deviatoric stress versus deviatoric strain for Ariake clay under conventional undrained triaxial compression with lower confining pressure

    图  16  小围压下常规三轴不排水剪切Ariake黏土的孔隙水压力与偏应变测试与预测对比

    Figure  16.  Comparison of prediction and test results of pore water pressure versus deviatoric strain for Ariake clay under conventional undrained triaxial compression with lower confining pressure

    图  17  等方向固结LCT黏土三轴压缩下偏应力与轴应变测试及预测对比

    Figure  17.  Comparison of prediction and test results of deviatoric stress versus axial strain for isotropic consolidated LCT clay under conventional triaxial compression

    图  18  等方向固结LCT黏土三轴压缩下体应变与轴应变测试及预测对比

    Figure  18.  Comparison of prediction and test results of volume strain versus axial strain for isotropic consolidated LCT clay under conventional triaxial compression

    图  19  K0固结LCT黏土三轴压缩下偏应力与轴应变测试及预测对比

    Figure  19.  Comparison of prediction and test results of deviatoric stress versus axial strain for K0 consolidated LCT clay under conventional triaxial compression

    图  20  K0固结LCT黏土三轴压缩下体应变与轴应变测试及预测对比

    Figure  20.  Comparison of prediction and test results of volume strain versus axial strain for isotropic consolidated LCT clay under conventional triaxial compression

    图  21  纯黑黏土常规三轴压缩下偏应力与轴应变测试及预测对比

    Figure  21.  Comparison of prediction and test results of deviatoric stress versus axial strain for isotropic consolidated pure black clay under conventional triaxial compression

    图  22  纯黑黏土常规三轴压缩下孔隙比与轴应变测试及预测对比

    Figure  22.  Comparison of prediction and test results of void ratio versus axial strain for isotropic consolidated pure black clay under conventional triaxial compression

    表  1  黏土材料参数

    Table  1.   Material parameters for clay

    Clay typeMsλκζωpe(MPa)Pm(MPa)Pi(MPa)α
    Pappadai1.30.390.0151.502.80.0120.30
    Cement clay11.30.930.121.500.080.0020.050
    Cement clay21.30.980.021.500.30.0020.130
    Cement clay31.31.180.0111.503.50.0021.50
    Ariake1.260.220.011.50.53.060.0020.130.3
    LCT1.10.560.011.510.060.010.020.01
    Pure black0.850.130.02010.0010.0010.010.3
    下载: 导出CSV
  • [1] 沈珠江. 土体结构性的数学模型——21 世纪土力学的核心问题. 岩土工程学报, 1996, 18(1): 95-97 (Shen Zhujiang. Mathematical model for soil structure——The core topic of soil mechanics in the 21st century. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97 (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.01.015
    [2] 高彦斌, 楼康明. 上海软黏土强度固有各向异性. 同济大学学报(自然科学版), 2013, 41(11): 1658-1663 (Gao Yanbin, Lou Kangming. Strength anisotropy of Shanghai soft clay induced by inherent fabric. Journal of Tongji University(Natural science) , 2013, 41(11): 1658-1663 (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.11.008
    [3] 高彦斌. 两种K0固结土样的强度比及其各向异性. 同济大学学报(自然科学版), 2019, 47(5): 634-639 (Gao Yanbin. Normalized strength and strength anisotropy of two kinds of K0 consolidated specimens. Journal of Tongji University(Natural science), 2019, 47(5): 634-639 (in Chinese)
    [4] 伍婷玉, 郭林, 蔡袁强等. 交通荷载应力路径下K0固结软黏土变形特性试验研究. 岩土工程学报, 2017, 39(5): 859-868 (Wu Tingyu, Guo Lin, Cai Yuanqiang, et al. Deformation behavior of K0-consolidated soft clay under traffic load-induced stress paths. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 859-868 (in Chinese) doi: 10.11779/CJGE201705010
    [5] 姚仰平. UH模型系列研究. 岩土工程学报, 2015, 37(2): 193-217 (Yao Yangping. Advanced UH models for soils. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217 (in Chinese) doi: 10.11779/CJGE201502001
    [6] 祝恩阳, 姚仰平. 结构性土UH模型. 岩土力学, 2015, 36(11): 3101-3110 (Zhu Enyang, Yao Yangping. A UH constitutive model for structured soils. Rock and Soil Mechanics, 2015, 36(11): 3101-3110 (in Chinese)
    [7] Zhu EY, YAO YP. Structured UH model for clays. Transportation Geotechnics, 2015, 3: 68-79
    [8] Yao YP, Hou W, Zhou AN. UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique, 2009, 59(5): 451-469 doi: 10.1680/geot.2007.00029
    [9] Yao YP, Hou W, Zhou AN. Constitutive model for overconsolidated clays. Science China-Technological Sciences, 2008, 51(2): 179-191 doi: 10.1007/s11431-008-0011-2
    [10] Yao YP, Gao ZW, Zhao JD, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope. Journal of Geotechnical and Geoenvironmental Engineering(ASCE) , 2012, 138(7): 860-868 doi: 10.1061/(ASCE)GT.1943-5606.0000649
    [11] Yao YP, Kong YX. Extended UH model: three-dimensional unified hardening model for anisotropic clays. Journal of Engineering Mechanics, 2011, 138(7): 853-866
    [12] Liu MD, Carter JP. Virgin compression of structured soils. Géotechnique, 1999, 49(1): 43-57
    [13] Liu MD, Carter JP. Modelling the destructuring of soils during virgin compression. Géotechnique, 2000, 50(4): 479-483
    [14] Liu MD, Carter JP, DESAI CS, et al. Analysis of the compression of structured soils using the disturbed state concept. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(8): 723-735 doi: 10.1002/1096-9853(200007)24:8<723::AID-NAG92>3.0.CO;2-V
    [15] 沈珠江. 结构性粘土的弹塑性损伤模型. 岩土工程学报, 1993, 15(3): 21-28 (Shen Zhujiang. An Elastoplastic damage model for cemented clays. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 21-28 (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.03.003
    [16] 沈珠江. 结构性黏土的堆砌体模型. 岩土力学, 2000, 21(1): 1-4 (Shen Zhujiang. A masonry model for structured clays. Rock and Soil Mechanics, 2000, 21(1): 1-4 (in Chinese) doi: 10.3969/j.issn.1000-7598.2000.01.001
    [17] 刘恩龙, 沈珠江. 结构性土压缩曲线的数学模拟. 岩土力学, 2006, 27(4): 615-620 (Liu Enlong, Shen Zhujiang. Modeling compression of structured soils. Rock and Soil Mechanics, 2006, 27(4): 615-620 (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.04.022
    [18] 周 成, 沈珠江, 陈生水等. 结构性土的次塑性扰动状态模型. 岩土工程学报, 2004, 26(4): 435-439 (Zhou Cheng, Shen Zhujiang, Chen Shengshui, et al. A hypoplasticity disturbed state model for structured soils. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 435-439 (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.001
    [19] Desai CS, Somasundaram S, Frantziskonis G. A hierarchical approach for constitutive modeling of geologic materials. International Journal for Numerical and Analytical Mechods in Geomechanics, 1986(10): 225-257
    [20] Desai CS, Toth J. Disturbed state constitutive modeling based on stress-strain and nondestructive behavior. International Journal of Solids and Structures, 1996, 33(11): 1619-1650 doi: 10.1016/0020-7683(95)00115-8
    [21] 孔令伟, 张先伟, 郭爱国等. 湛江强结构性黏土的三轴排水蠕变特征. 岩石力学与工程学报, 2011, 30(2): 365-372 (Kong Lingwei, Zhang Xianwei, Guo Aiguo, et al. Creep behavior of Zhanjiang Strong structured clay by drained triaxial test. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 365-372 (in Chinese)
    [22] 路德春, 韩佳月, 梁靖宇等. 横观各向同性黏土的非正交弹塑性本构模型. 岩石力学与工程学报, 2020, 39(4): 793-803 (Lu Dechun, Han Jiayue, Liang Jingyu, et al. Non-orthogonal elastoplastic constitutive model of transversely isotropic clay. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 793-803 (in Chinese)
    [23] 梁靖宇, 杜修力, 路德春等. 特征应力空间中土的分数阶临界状态模型. 岩土工程学报, 2019, 41(3): 581-587 (Liang Jingyu, Du Xiuli, LU Dechun, et al. Fractional order critical state model for soils in the characteristic stress space. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 581-587 (in Chinese)
    [24] Lu DC, Ma C, Du XL, et al. Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept. International Journal of Geomechanics, 2017, 17(2): 4016058 doi: 10.1061/(ASCE)GM.1943-5622.0000729
    [25] Lu DC, Li XQ, Du XL, et al. A simple 3D elastoplastic constitutive model for soils based on the characteristic stress. Computers and Geotechnics, 2019, 109(5): 229-247
    [26] Lu DC, Liang JY, Du XL, et al. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule. Computers and Geotechnics, 2019, 105(2): 277-290
    [27] Balasubramanian AS, Hang ZM. Yielding of weathered Bankok clay. Soils and Foundations, 1980, 20(2): 1-15 doi: 10.3208/sandf1972.20.2_1
    [28] Cotecchia F, Chandler RJ. A general framework for the mechanical behaviour of clays. Geotechnique, 2000, 50(4): 431-47 doi: 10.1680/geot.2000.50.4.431
    [29] Horpibulsuk S, Miura N, Bergado DT. Undrained shear behaviour of cement admixed clay at high water content. Journal of Geotechnical and Geoenvironmental Engineering (ASCE) 2004;130(10): 1096–105.
    [30] Gens A. Stress-strain and strength characteristics of a low plasticity clay (PhD Thesis). 1982, Imperial College, London.
    [31] Biarez J, Hicher PY. Elementary Mechanics of Soil Behaviour: Saturated Remoulded Soils. Rotterdam, Brookfield, A. A. Balkema Press, 1994.
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  8
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-09-01

目录

    /

    返回文章
    返回