EXPERIMENT OF ADSORPTION-DESORPTION HYSTERSIS OF GAS IN COAL SHALE BY USING NUCLEAR MAGNETIC RESONANCE SPECTRUMS
-
摘要: 煤系页岩瓦斯主要以吸附态和游离态形式存在, 其解吸过程相对吸附过程具有普遍滞后现象, 因此从微细观角度定量研究其吸附−附解吸迟滞规律对页岩气井后期稳产增产具有重要意义. 在前人研究基础上结合核磁共振谱理论推导出能够准确表征煤系页岩瓦斯吸附−解吸迟滞效应微细观评价模型, 并采用核磁共振谱测试技术, 以双鸭山盆地东保卫煤矿三采区36# 煤层底板煤系页岩为研究对象, 进行煤系页岩瓦斯吸附−解吸迟滞效应核磁共振谱实验, 模拟不同储层原位应力状态煤系页岩瓦斯迟滞效应发生全过程, 进一步对吸附态瓦斯、游离态瓦斯以及微细观方法测定的宏观瓦斯迟滞规律进行定量化研究, 并对其发生机理以及其对深部煤系页岩瓦斯开采影响进行了初步探究. 结果表明: 应力状态下吸附态和游离瓦斯均有滞后效应; 瓦斯宏观迟滞系数与平均有效应力呈幂函数关系, 而瓦斯宏观迟滞效应中由吸附态或游离态瓦斯引起的迟滞系数与平均有效应力关系均可采用二次多项式拟合; 孔裂隙应力损伤和微孔隙瓦斯扩散受限耦合或许是煤系页岩瓦斯吸附−解吸迟滞效应产生根本原因之一.Abstract: Coal shale gas was mainly composed of adsorbed and porous medium-confined gas. The desorption of coal shale gas generally lagged behind the adsorption, therefore, it was significance to quantitatively study the adsorption and desorption hysteresis law from the micro perspective for stable production and stimulation of shale gas wells in the later stage. Based on a large number of fruitful previous studies and the theory of nuclear magnetic resonance spectrums, an improved micro evaluation model for the accurate characterization of the adsorption and desorption hysteresis effect of coal shale gas was deduced. In order to simulate the whole process of adsorption and desorption hysteresis of gas in coal shale, the nuclear magnetic resonance spectrum technique was applied for the experimental research on adsorption and desorption hysteresis of gas in coal shale from coal floor of No. 36 coal seam in No. 3 mining area of Dongbaowei Mine in Shuangyashan Basin. And on such bases, the micro quantitative research on adsorption and desorption hysteresis law of the adsorbed gas, porous medium-confined gas, macro gas measurement by micro method in coal shale was carried out, the mechanism of adsorption and desorption hysteresis and its influence on shale gas mining in deep coal measures were preliminarily explored. Results indicated that in the process of adsorption and desorption under stress state, both adsorbed and porous medium-confined gas had obvious hysteresis; the relationship between macroscopic hysteresis coefficient of gas and the average effective stress was power function; while the relationship between hysteresis coefficient and average effective stress caused by adsorbed gas could be fitted by quadratic polynomial, and it was the same with porous medium-confined gas. The coupling of stress damage and gas diffusion in the pore fracture structure of coal series shale might be one of the fundamental reasons for the gas adsorption and desorption hysteresis of coal shale.
-
表 1 迟滞效应宏观定量评价指标
Table 1. Macro quantitative evaluation index of hysteresis
Evaluation index Formula Parameter Reference Freundlich ${S_{{\rm{ad}}}} = {K_{{\rm{ad}}}}{C_{{\rm{ad}}}}^{1/{n_{{\rm{ad}}}}}$,
${S_{{\rm{de}}}} = {K_{{\rm{de}}}}{C_{{\rm{de}}}}^{1/{n_{{\rm{de}}}}}$,
$HI = \dfrac{{{n_{{\rm{de}}}}}}{{{n_{{\rm{ad}}}}}}$${S_{{\rm{ad}}}}$—equilibrium concentration of solid phase adsorption
${S_{{\rm{de}}}}$—equilibrium concentration of solid phase desorption
K—adsorption parameter
C—equilibrium concentration of adsorbent
${n_{{\rm{ad}}}}$—Freundlich adsorption index
${n_{{\rm{de}}}}$ —Freundlich desorption index[21-22] slope $HI = \dfrac{{{f_{{\rm{ad}}}}^\prime (C) - {f_{{\rm{de}}}}^\prime (C)}}{{{f_{{\rm{ad}}}}^\prime (C)}}$ ${f_{{\rm{ad}}}}^\prime (C)$, ${f_{{\rm{de}}}}^\prime (C)$—first derivative of characteristic equation [23] solid phase concentration $HI = \dfrac{{\max ({S_{{\rm{de}}}} - {S_{{\rm{ad}}}})}}{{{S_{{\rm{ad}}}}}}$,
$HI = {\left. {\dfrac{{\max ({S_{{\rm{de}}}} - {S_{{\rm{ad}}}})}}{{{S_{{\rm{ad}}}}}}} \right|_{T,C}}$${S_{{\rm{ad}}}}$—equilibrium concentration of solid phase adsorption
${S_{{\rm{de}}}}$—equilibrium concentration of solid phase desorption
C—equilibrium concentration of adsorbent
T—test temperature[24] area $HI = 100\left(\dfrac{{{A_{{\rm{de}}}} - {A_{{\rm{ad}}}}}}{{{A_{{\rm{ad}}}}}}\right)$ ${A_{{\rm{de}}}}$—area under desorption curve
${A_{{\rm{ad}}}}$—area under adsorption curve[25] 表 2 页岩特征参数
Table 2. Shale characteristic parameters
Name ρ/(g·cm−3) φ/% σbc/MPa E/GPa shale 2.43 1.6 ~ 5.0 3.0 ~ 18.7 13.5 表 3 自由态瓦斯核磁共振谱特性实验方案
Table 3. Experiment of free gas by NMR spectrums
No. Confining
pressure
/MPaAxial
pressure
/MPaPore
pressure
/MPa1 1.79 2.13 1.35 2 3.09 3.54 2.46 3 4.03 4.93 3.52 4 4.99 5.71 4.43 5 6.02 6.46 5.44 6 7.01 7.56 6.50 7 8.89 9.41 8.29 表 4 吸附过程核磁共振谱实验方案
Table 4. Experimental adsorption of gas by NMR spectrums
No. Confining
pressure
/MPaAxial
pressure
/MPaPore
pressure
/MPa1 1.78 2.24 1.31 2 2.97 3.61 2.24 3 4.04 4.47 3.37 4 5.02 5.43 4.39 5 6.02 6.44 5.65 6 7.01 7.45 6.33 7 8.79 9.34 7.89 表 5 解吸过程核磁共振谱实验方案
Table 5. Experimental desorption of gas by NMR spectrums
No. Confining
pressure
/MPaAxial
pressure
/MPaPore
pressure
/MPa1 8.79 9.34 7.89 2 7.49 8.18 6.94 3 6.54 7.23 5.76 4 5.47 6.24 4.48 5 4.52 5.15 3.41 6 3.51 4.16 2.40 7 2.49 3.25 1.41 8 0.95 1.47 0.40 表 6 常用吸附模型
Table 6. Common adsorption models
Model Model expression Adsorption R2 L $V = P{V_{\rm{L}}}/({P_{\rm{L}}} + P)$ 0.80002 F $V = {K_{\rm{b}}}{P^m}$ 0.93634 E-L $V = {K_{\rm{b}}}P{V_{\rm{L}}}/(1 + {K_{\rm{b}}}P + m\sqrt {{K_{\rm{b}}}P} )$ 0.99038 T $V = {K_{\rm{b}}}P{V_{\rm{L}}}/{[1 + {({K_{\rm{b}}}P)^m}]^{1/m}}$ 0.75002 B-BET $V = \dfrac{{{V_{\rm{m}}}CP}}{{({P^0} - P)[1 + (C - 1)(P/{P^0})]}}$ 0.76401 T-BET $V = \dfrac{{{V_{\rm{m}}}CP[1 - (n - 1)(P/{P^0}) + n{{(P/{P^0})}^{n + 1}}]}}{{({P^0} - P)[1 + (C - 1)(P/{P^0}) - C{{(P/{P^0})}^{n + 1}}]}}$ 0.93211 D-R $V = {V_0}\exp [ - D{\ln ^2}({P^0}/P)]$ 0.99475 D-A $V = {V_0}\exp [ - D{\ln ^m}({P^0}/P)]$ 0.56960 注: PL—Langmuir压力, MPa; VL—Langmuir体积, cm3/g; Vm—单层极限吸附量, cm3/g; P0—饱和蒸汽压力, MPa; C—吸附热常数; V0—最大吸附量, cm3/g; Kb—吸附经验常数; m—吸附剂非均质参数; n—模型参数; D—净吸附热常数.
Notes: PL—Langmuir pressure, MPa; VL—Langmuir volume, cm3/g; Vm—monolayer limit adsorption capacity, cm3/g; P0—saturated steam pressure, MPa; C—adsorption heat constant; V0—maximum adsorption capacity, cm3/g; Kb—adsorption empirical constant; m—adsorbent heterogeneity parameters; n—model parameter; D—final adsorption heat constant.表 7 常用解吸模型
Table 7. Common desorption models
Model Model expression Desorption R2 Weibull $V = {V_0}[1 - \exp ( - b{p^q})]$ 0.99660 desorption function $V = \dfrac{{abp}}{{1 + bp}} + c$ 0.97953 注: a—煤系页岩最大吸附量, cm3/g; b—吸附热、吸附速度与解吸速度综合函数, MPa−1; c—残余吸附量, cm3/g; V0—最大吸附量, cm3/g; b—吸附热常数; q—吸附质在孔隙表面的占位比.
Notes: a—maximum adsorption capacity of coal shale, cm3/g; b—comprehensive function of adsorption heat, adsorption rate and desorption rate, MPa−1; c—residual adsorption capacity, cm3/g; V0—maximum adsorption capacity, cm3/g; b—adsorption heat constant; q—occupation ratio of adsorbate on pore surface. -
[1] 姜昊坤. 涪陵页岩气产能变化规律及合理配产研究. 江汉石油职工大学学报, 2018, 31(1): 21-37 (Jiang Haokun. Research on capacity variation rule and optimal production rate of fuling shale gas. Journal of Jianghan Petroleum University of Staff and Workers, 2018, 31(1): 21-37 (in Chinese) doi: 10.3969/j.issn.1009-301X.2018.01.007 [2] 王南, 钟太贤, 刘兴元等. 复杂条件下页岩气藏生产特征及规律. 断块油气田, 2012, 19(6): 767-770 (Wang Nan, Zhong Taixian, Liu Xingyuan, et al. Production characteristics and law of shale gas reservoir under complex conditions. Fault-Block Oil and Gas Field, 2012, 19(6): 767-770 (in Chinese) [3] 陈杰. 页岩气输运机理的微纳尺度力学研究. [博士论文]. 合肥: 中国科学技术大学, 2017(Chen Jie. Research on the transport mechanisms of shale gas at micro/nano scale. [PhD Thesis]. Hefei: University of Science and Technology of China, 2017 (in Chinese)) [4] 郭为, 胡志明, 左罗等. 页岩基质解吸-扩散-渗流耦合实验及数学模型. 力学学报, 2015, 47(6): 916-922 (GuoWei, Hu Zhiming, Zuo Luo, et al. Gas desorption-diffusion-seepage coupled experiment of shale matrix and mathematic model. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 916-922 (in Chinese) doi: 10.6052/0459-1879-15-068 [5] Ekundayo JM, Rezaee R. Numerical simulation of gas production from gas shale reservoirs—influence of gas sorption hysteresis. Energies, 2019, 12: 3405-3417 doi: 10.3390/en12183405 [6] Ekundayo JM, Rezaee R, Fan C. Experimental investigation and mathematical modelling of shale gas adsorption and desorption hysteresis. Journal of Natural Gas Science and Engineering, 2020, 9: 103761 [7] Zapata Y, Sakhaee-Pour A. Modeling adsorption–desorption hysteresis in shales: Acyclic pore model. Fuel, 2016, 181: 557-565 [8] Hazraa B, Wood DA, Vishal V, et al. Porosity controls and fractal disposition of organic-rich Permian shales using low-pressure adsorption techniques. Fuel, 2018, 220: 837-848 doi: 10.1016/j.fuel.2018.02.023 [9] Elizabeth B, Sugata PT, Mohammad P, et al. Capillary-condensation hysteresis in naturally-occurring nanoporous media. Fuel, 2019, 63: 1121-1132 [10] Mehmani A, Prodanović M. The application of sorption hysteresis in nano-petrophysics using multiscale multiphysics network models. International Journal of Coal Geology, 2014, 129: 96-108 [11] Zhao H, Lai Z, Firoozabadi A. Sorption hysteresis of light hydrocarbons and carbon dioxide in shale and kerogen. Scientific Reports, 2017, 7(1): 16209 doi: 10.1038/s41598-017-13123-7 [12] Chen J, Wang FC, Liu H, et al. Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores. Science China Physics, Mechanics & Astronomy, 2017, 1: 1-8 [13] Xu R, Prodanovi M, Landry C. Pore scale study of gas sorption hysteresis in shale nanopores using lattice Boltzmann method. International Journal of Coal Geology, 2020, 229: 103568 [14] 关富佳, 张杰, 王海涛等. 川东龙马溪组页岩解吸滞后现象实验研究. 西安石油大学学报(自然科学版), 2017, 32(1): 71-74 (Guan Fujia, Zhang Jie, Wang Haitao, et al. Experimental study on desorption hysteresis of longmaxi formation shale in eastern Sichuan. Journal of Xi'an Shiyou University (Natural Science) , 2017, 32(1): 71-74 (in Chinese) [15] 唐巨鹏, 田虎楠, 马圆. 煤系页岩瓦斯吸附-解吸特性核磁共振实验研究. 中国安全生产科学技术, 2017, 13: 121-125 (Tang Jupeng, Tian Hunan, Ma Yuan. Experimental research on adsorption-desorption characteristics of shale gas in coal shale by nuclear magnetic resonance. Journal of Safety Science and Technology, 2017, 13: 121-125 (in Chinese) [16] 周银波, 王思琪, 毛淑星等. 热效应对焦煤甲烷解吸迟滞特征的影响研究. 中国安全生产科学技术, 2020, 16(11): 125-129 (Zhou Yinbo, Wang Siqi, Mao Shuxing, et al. Study on influence of thermal effect on methane desorption hysteresis characteristics of coking coal. Journal of Safety Science and Technology, 2020, 16(11): 125-129 (in Chinese) [17] 陆壮, 王亮, 聂雷等. 不同变质程度煤体瓦斯解吸迟滞特征实验研究. 西安科技大学学报, 2020, 40(1): 88-98+132 (Lu Zhuang, Wang Liang, Nie Lei, et al. Experimental study of methane desorption hysteresis characteristics of coal with different metamorphic degrees. Journal of Xi'an University of Science and Technology, 2020, 40(1): 88-98+132 (in Chinese) [18] 向雪冰, 司马立强, 王亮等. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例. 岩性油气藏, 2021, 33(3): 1-12 (Xiang Xuebing, Sima Liqiang,Wang Liang, et al. Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin. Lithologic Reservoirs, 2021, 33(3): 1-12 (in Chinese) [19] Yao Y, Liu J, Liu D, et al. A new application of NMR in characterization of multiphase methane and adsorption capacity of shale. International Journal of Coal Geology, 2019, 201: 76-85 [20] 姚艳斌, 刘军, 孙晓晓等. 一种同时测定页岩中吸附态及游离态甲烷的测定方法. 北京市: CN107202811B, 2019-06-28(Yao Yanbin, Liu Jun, Sun Xiaoxiao, et al. A method for simultaneous determination of adsorbed and free methane in shale. Beijing: CN107202811B, 2019-06-28 (in Chinese)) [21] Ding G, Rice JA. Effect of lipids on sorption/desorption hysteresis in natural organic matter. Chemosphere, 2011, 84(4): 519-526 doi: 10.1016/j.chemosphere.2011.03.009 [22] 裴广鹏, 朱宇恩, 李华. 有机质对土壤中氯吡脲吸附-解吸行为的影响. 中国农学通报, 2020, 36(32): 94-100 (Pei Guangpeng, Zhu Yuen, Li Hua. Effect of soil organic matter on adsorption and desorption of forchlorfenuron in soil. Chinese Agricultural Science Bulletin, 2020, 36(32): 94-100 (in Chinese) [23] Ran Y, Xiao BH, Fu JM, et al. Sorption and desorption hysteresis of organic contaminants by kerogen in a sandy aquifer material. Chemosphere, 2003, 50(10): 1365-1376 doi: 10.1016/S0045-6535(02)00762-2 [24] Wu W, Sun H. Sorption-desorption hysteresis of phenanthrene-effect of nanopores, solute concentration, and salinity. Chemosphere, 2010, 81(7): 961-967 doi: 10.1016/j.chemosphere.2010.07.051 [25] Zhu H, Selim HM. Hysteretic behavoir of metolachlor adsorption-desorption in soils. Soil Science, 2000, 165(8): 632-645 doi: 10.1097/00010694-200008000-00005 [26] 卢义玉, 彭子烨, 夏彬伟等. 深部煤岩工程多功能物理模拟实验系统—煤与瓦斯突出模拟实验. 煤炭学报, 2020, 45(S1): 272-283 (Lu Yiyu, Peng Ziye, Xia Binwei, et al. Multi-functional physical model testing system of deep coal petrography engineering—Coal and gas outburst simulation experiment. Journal of China Coal Society, 2020, 45(S1): 272-283 (in Chinese) [27] 唐巨鹏, 陈帅, 李卫军. 考虑有效应力的钻屑量理论分析及实验研究. 岩土工程学报, 2018, 40(1): 130-138 (Tang Jupeng, Chen Shuai, Li Weijun. Theoretical and experimental studies on drilling cutting weight considering effective stress. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 130-138 (in Chinese) [28] Guo R, Mannhardt K, Kantzas A. Characterizing moisture and gas content of coal by low-field NMR. Journal of Canadian Petroleum Technology, 2007, 46(10): 49-54 [29] Dubinin MM. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews, 1960, 60(2): 235-241 doi: 10.1021/cr60204a006 [30] 林海宇, 熊健, 刘向君. 川南龙马溪组页岩甲烷等温解吸特征研究. 油气藏评价与开发, 2021, 11(1): 56-61 (Lin Haiyu, Xiong Jian, Liu Xiangjun. Study on isothermal desorption characteristics of methane in shale from Longmaxi Formation in South Sichuan Basin. Reservoir Evaluation and Development, 2021, 11(1): 56-61 (in Chinese) [31] 李世愚, 和泰名, 尹祥础等. 岩石断裂力学导论. 北京: 中国科学技术大学出版社, 2010: 321-323(Li Shiyu, He Taiming, Yin Xiangchu, et al. Introduction of Rock Fracture Mechanics. Beijing: Press of University of Science and Technology of China, 2010: 321-323 (in Chinese)) [32] 谢和平, 周宏伟, 薛东杰等. 煤炭深部开采与极限开采深度的研究与思考. 煤炭学报, 2012, 37(4): 535-542 (Xie Heping, Zhou Hongwei, Xue Dongjie, et al. Research and consideration on deep coal mining and critical mining depth. Journal of China Coal Society, 2012, 37(4): 535-542 (in Chinese) [33] 张乔良, 孙军昌, 熊生春等. 特低渗透储层岩石渗透率应力敏感新机制. 科技导报, 2012, 30(35): 44-47 (Zhang Qiaoliang, Sun Junchang, Xiong Shengchun, et al. A new mechanism for the permeability stress-sensitivity of reservoir rock with ultra-low permeability. Science &Technology Review, 2012, 30(35): 44-47 (in Chinese) doi: 10.3981/j.issn.1000-7857.2012.35.006 -