EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下成一定夹角平板间的表面张力驱动流动的研究

陈上通 吴笛 王佳 段俐 康琦

陈上通, 吴笛, 王佳, 段俐, 康琦. 微重力下成一定夹角平板间的表面张力驱动流动的研究. 力学学报, 2022, 54(2): 326-335 doi: 10.6052/0459-1879-21-261
引用本文: 陈上通, 吴笛, 王佳, 段俐, 康琦. 微重力下成一定夹角平板间的表面张力驱动流动的研究. 力学学报, 2022, 54(2): 326-335 doi: 10.6052/0459-1879-21-261
Chen Shangtong, Wu Di, Wang Jia, Duan Li, Kang Qi. Capillary rise of liquid between plates with a certain angle under microgravity. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 326-335 doi: 10.6052/0459-1879-21-261
Citation: Chen Shangtong, Wu Di, Wang Jia, Duan Li, Kang Qi. Capillary rise of liquid between plates with a certain angle under microgravity. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 326-335 doi: 10.6052/0459-1879-21-261

微重力下成一定夹角平板间的表面张力驱动流动的研究

doi: 10.6052/0459-1879-21-261
基金项目: 中国空间站首批空间科学实验项目, 中国科学院战略性先导科技专项(B类) (XDB23030300)和自然科学基金(12032020, 12072354)资助
详细信息
    作者简介:

    康琦, 研究员, 主要研究方向: 微重力流体物理. E-mail: kq@imech.ac.cn

  • 中图分类号: O35

CAPILLARY RISE OF LIQUID BETWEEN PLATES WITH A CERTAIN ANGLE UNDER MICROGRAVITY

  • 摘要: 空间微重力环境中, 由于重力基本消失, 表面张力等次级力发挥主要作用, 流体行为与地面迥异, 因此有必要深入探究微重力环境中的流体行为规律和特征. 板式贮箱利用板式组件在微重力环境中对流体进行管理, 从而为推力器提供不夹气的推进剂, 这对航天器精确进行姿态控制、轨道调整具有重要意义. 板式组件中常包含成一定夹角的平板结构, 比如蓄液叶片之间. 本文研究了微重力环境中成一定角度平板间的表面张力驱动流动问题, 考虑了液体与壁面的动态接触角、对流引起的压力损失、黏滞阻力、液池内弯曲的液面等因素的影响, 推导出了表面张力驱动流动中液体爬升高度的二阶微分方程. 该方程可用四阶Runge−Kutta方法求解. 通过同时考虑两个主导力, 可将流动过程分为三个阶段, 并得到了不同阶段内的爬升高度的近似方程. 本研究建立了6个不同尺寸的计算模型、选用3种不同型号的硅油, 利用有限体积法开展仿真工作, 仿真结果与理论结果吻合良好, 验证了理论解的正确性. 本文的研究结果可为板式贮箱的研制和空间流体管理提供理论依据和数据支撑.

     

  • 图  1  研究模型正向剖视图

    Figure  1.  Front view of the model

    图  2  平板模型的水平截面

    Figure  2.  Horizontal cross section of the plates

    图  3  板间入口处的等效半球形控制体

    Figure  3.  Equivalent circular entrance and the control volume around the inlet

    图  4  仿真模型

    Figure  4.  Numerical model

    图  5  仿真结果侧视图. 液体为10号硅油, a = 2 mm, b = 14 mm, c = 5 mm

    Figure  5.  Front view of the numerical model as the liquid is SF 10 and a = 2 mm, b = 14 mm, c = 5 mm

    图  6  板上液相分布, 红色部分代表液体

    Figure  6.  Liquid distribution in a plate and the red part represents liquid

    图  7  液体爬升高度随时间变化

    Figure  7.  Liquid climbing height h vs. time t

    图  8  各力随时间变化情况

    Figure  8.  Forces’ development vs time

    图  9  液体爬升高度与时间的关系

    Figure  9.  The meniscus height h plotted vs. time t

    表  1  硅油物性参数(25 °C)

    Table  1.   Liquid properties (25 °C)

    Liquidμ/
    (kg·m−1·s−1)
    Ρ/
    (kg·m−3)
    $\sigma $
    /(N·m−1)
    $\nu $
    /(mm2·s−1)
    SF 20.0017468730.01832
    SF 50.0045759150.01975
    SF 100.0093509350.020110
    下载: 导出CSV

    表  2  计算参数

    Table  2.   Calculation parameters

    No.a/mmb/mmc/mmLiquidvmax/(mm·s−1)RemaxOh/10−3t1/st2/s
    12123SF 249.32154.700.07430.531
    22123SF 536.765.811.50.07810.212
    32123SF 1026.623.223.10.08080.106
    42124SF 241.51974.500.09770.745
    52124SF 531.459.711.10.104 00.298
    62124SF 1021.920.822.10.110 00.149
    71145SF 245.82324.300.09380.642
    81145SF 1025.125.421.40.104 00.128
    92145SF 239.22164.200.121 00.987
    102145SF 1021.223.420.50.138 00.197
    113145SF 233.41984.000.154 01.350
    123145SF 525.360.19.900.170 00.539
    133145SF 1016.620.919.80.185 00.270
    143144SF 238.92174.100.123 01.050
    153144SF 530.066.910.20.134 00.419
    163144SF 1021.123.520.40.141 00.210
    下载: 导出CSV
  • [1] Washburn EW. The dynamics of capillary flow. Physical Review, 1921, 17(3): 273-283 doi: 10.1103/PhysRev.17.273
    [2] Concus P, Finn R. On capillary free surfaces in the absence of gravity. Acta Mathematica, 1974, 132(1): 177-198
    [3] Levine S, Reed P, Watson EJ, et al. A theory of the rate of rise of a liquid in a capillary. Journal of Colloid and Interface Science, 1976, 3: 403-419
    [4] Stange M, Dreyer M, Rath H. Capillary driven flow in circular cylindrical tubes. Physics of Fluids, 2003, 15(9): 2587-2601 doi: 10.1063/1.1596913
    [5] Jiang TS, Oh SG, Slattery JC. Correlation for dynamic contact angle. Journal of Colloid Interface Science, 1979, 69(1): 74-77 doi: 10.1016/0021-9797(79)90081-X
    [6] Dreyer M, Delgado A, Rath HJ. Capillary rise of liquid between parallel plates under microgravity. Journal of Colloid Interface Science, 1994, 163(1): 158-168 doi: 10.1006/jcis.1994.1092
    [7] Weislogel MM, Lichter S. Capillary flow in an interior corner. Journal of Fluid Mechanics, 1998, 373: 349-378 doi: 10.1017/S0022112098002535
    [8] Weislogel MM, Nardin CL. Capillary driven flow along interior corners formed by planar walls of varying wettability. Microgravity Science and Technology, 2005, 17(3): 45-55 doi: 10.1007/BF02872087
    [9] Chen YK, Weislogel MM, Nardin CL. Capillary driven flows along rounded interior corners. Journal of Fluid Mechanics, 2006, 556: 235-271
    [10] Yue BZ, Wang ZL. Numerical study of three-dimensional free surface dynamics. Acta Mechanica Sinica, 2006, 22: 120-125 doi: 10.1007/s10409-006-0100-z
    [11] Higuera FJ, Medina A, Linan A. Capillary rise of a liquid between two vertical plates making a small angle. Physics of Fluids, 2008, 20(10): 102102 doi: 10.1063/1.3000425
    [12] Wolf F, Santos L, Phillippi P. Capillary rise between plates under dynamic conditions. Journal of Colloid and Interface Science, 2010, 344(1): 171-179 doi: 10.1016/j.jcis.2009.12.023
    [13] Bolleddula DA, Chen YK, Semerjian B, et al. Compound capillary flows in complex containers: drop tower test results. Microgravity Science and Technology, 2010, 22(4): 475-485 doi: 10.1007/s12217-010-9213-x
    [14] Wei YX, Chen XQ, Huang YY. Interior corner flow theory and its application to the satellite propellant management device design. Science China-Teconological Sciences, 2011, 54(7): 1849-1854 doi: 10.1007/s11431-011-4374-4
    [15] 李永, 赵春章, 潘海林等. 蓄液器在板式贮箱中的应用及性能分析. 宇航学报, 2008, 29(1): 24-28 (Li Yong, Zhao Chunzhang, Pan Hailin, et al. The applications in the vane type tank and performance analysis for the sponge. Journal of Astronautics, 2008, 29(1): 24-28 (in Chinese) doi: 10.3873/j.issn.1000-1328.2008.01.004
    [16] 庄保堂, 李永, 潘海林等. 微重力环境下导流叶片流体传输速度的试验研究. 空间控制技术与应用, 2012, 38(6): 1-5 (Zhuang Baotang, Li Yong, Pan Hailin, et al. Experiment investigation on transportation velocity of the fluid on propellant acquisition vanes under microgravity environment. Aerospace Control and Application, 2012, 38(6): 1-5 (in Chinese) doi: 10.3969/j.issn.1674-1579.2012.06.001
    [17] 胡齐, 李永, 潘海林等. 微重力环境下大叶片板式贮箱内流体行为的数值仿真与试验验证. 空间控制技术与应用, 2013, 39(2): 58-62 (Hu Qi, Li Yong, Pan Hailin, et al. Numerical simulation and experiment verification of the fluid behaviour in the vane type tank with big vanes in microgravity environment. Aerospace Control and Application, 2013, 39(2): 58-62 (in Chinese) doi: 10.3969/j.issn.1674-1579.2013.02.011
    [18] Reyssat E. Capillary bridges between a plane and a cylindrical wall. Journal of Fluid Mechanics, 2015, 773: R1 doi: 10.1017/jfm.2015.233
    [19] Wu ZY, Huang YY, Chen XQ, et al. Capillary driven flows along curved interior corners. International journal of multiphase flow, 2018, 109: 14-25 doi: 10.1016/j.ijmultiphaseflow.2018.04.004
    [20] Romain C, Fabian D, Michael G, et al. Modeling of capillary-driven flows in axisymmetric geometries. Computers and Fluids, 2019, 178: 132-140 doi: 10.1016/j.compfluid.2018.08.024
    [21] Chen ST, Han ZY, Duan L, et al. Experimental and numerical study on capillary flow along deflectors in plate surface tension tanks in microgravity environment. AIP Advances, 2019, 9(2): 025020 doi: 10.1063/1.5083672
    [22] Cheng X, Chen Y, Li HR, et al. Investigation on capillary flow in tubes with variable diameters. Journal of Porous and Media, 2019, 22(13): 1627-1638 doi: 10.1615/JPorMedia.2019026774
    [23] Chen ST, Ye ZJ, Duan L, et al. Capillary driven flow in oval tubes under microgravity. Physics of Fluids, 2021, 33(3): 032111 doi: 10.1063/5.0040993
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1045
  • HTML全文浏览量:  414
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 录用日期:  2021-08-22
  • 网络出版日期:  2021-08-22
  • 刊出日期:  2022-02-17

目录

    /

    返回文章
    返回