NUMERICAL ICE TANK FOR ICE LOADS BASED ON MULTI-MEDIA AND MULTI-SCALE DISCRETE ELEMENT METHOD
-
摘要: 极地船舶与海洋工程结构冰载荷的确定是其结构抗冰设计、冰区安全运行和结构完整性管理的重要研究内容. 当前快速发展的高性能计算技术和多介质、多尺度数值方法为准确、高效地计算结构冰载荷提供了有效的途径, 其中以离散元方法为代表的数值方法取得了出色的研究成果. 为此, 本文针对目前极地船舶与海洋工程结构对冰载荷及力学响应的工程需求, 同时考虑国内外对海冰、工程结构与流体相互耦合的多介质、多尺度数值方法研究现状, 对极地船舶与海洋工程数值冰水池的概念、框架、开发技术以及基于离散元方法的软件实现与工程应用进行了论述. 数值冰水池在船舶与海洋工程结构冰载荷确定方面具有可靠性、经济性、快速性、扩展性和情景化等显著优势. 本文工作借鉴数值水池的研究思路, 以典型船舶和海洋平台结构冰载荷及结构力学响应的离散元计算为例, 探讨了数值冰水池研究的可行性和工程应用前景, 阐述其与理论分析、现场测量和模型试验研究相结合的必要性. 以上研究有益于中国在极地船舶与海洋工程领域形成具有独立知识产权的数值计算分析平台, 对中国极地海洋强国的战略实施具有很好的启发和指导意义.Abstract: The investigation of ice loads on polar ships and offshore engineering structures is very important for anti-ice structure design, safe operation and structural integrity management in ice-covered regions. Recently, the rapid developments on high-performance computing techniques and multi-media, multi-scale numerical methods provide an effective improvement on the determination of ice loads on polar ships and offshore engineering structures. The numerical methods represented by the discrete element method (DEM) achieved excellent contributions on the ice load predictions. Therefore, considering the engineering demands to forecast ice loads and mechanical responses of polar ships and offshore structures, and also based on the present state-of-the-art of the multi-media and multi-scale numerical methods for coupling of sea ice, engineering structures and fluid, the concept, frame and technique of numerical ice tank are discussed based on DEM simulations. The numerical ice tank has significant advantages in reliability, economy, rapidity, expansibility and scenario in determining the ice load on hulls and offshore engineering structures. Based on the concept and experience of numerical tank, this paper illustrates the feasibility and engineering application prospects of numerical ice tank with the DEM simulations on ice loads and structural mechanical responses of typical ship and offshore platform. The computational parameters in DEM simulations were calibrated with the mechanical properties of sea ice obtained with physical experiments. The ice loads on ship hull and jacket platforms simulated with DEM were compared with the model tests and filed measurements. Finally, the interaction between ice cover and structures of model tests in ice tank are repeated numerically with DEM. With the numerical ice tank, ice loads on ships and offshore structures can be simulated with DEM under various ice conditions on different scales. The necessity of combination of theoretical analysis, field measurement and model test with the numerical ice tank is also elaborated. The research above can be aided to develop the numerical software for ice load determination for polar ships and offshore engineering structures, and to promote the implementation of the polar ocean strategy in China.
-
表 1 海冰模型试验中的主要物理量比尺
Table 1. Scale ratio of primary physical parameters in sea ice model tests
Parameter Scale Parameter Scale length/m $ \lambda $ ice strneght/Pa $ \lambda $ time/s $ \lambda^{\text{1/2}} $ ice thickness/m $ \lambda $ velocity/($ \mathrm{m}{\cdot \mathrm{s}}^{-1} $) $ \lambda^{\text{1/2}} $ elasticity modulus/Pa $ \lambda $ mass/kg $ {\lambda }^{3} $ force/N $ {\lambda }^{3} $ period/s $ \lambda^{\text{1/2}} $ stiffness /($\mathrm{N}{\cdot \mathrm{m} }^{-1}$) $ {\lambda }^{2} $ -
[1] Dempsey JP, Palmer AC, Sodhi DS. High pressure zone formation during compressive ice failure. Engineering Fracture Mechanics, 2001, 68(17): 1961-1974 [2] Yue Q, Bi X. Ice-induced jacket structure vibrations in Bohai Sea. Journal of Cold Region Engineering, 2000, 14(2): 81-92 doi: 10.1061/(ASCE)0887-381X(2000)14:2(81) [3] Xu N, Yue Q, Bi X, et al. Experimental study of dynamic conical ice force. Cold Regions Science and Technology, 2015, 120: 21-29 doi: 10.1016/j.coldregions.2015.08.010 [4] Nord TS, Øiseth O, Lourens E. Ice force identification on the Norströmsgrund lighthouse. Computers and Structures, 2016, 169: 24-39 doi: 10.1016/j.compstruc.2016.02.016 [5] Ervik Å, Nord TS, Høyland KV, et al. Ice-ridge interactions with the Norströmsgrund lighthouse: Global forces and interaction modes. Cold Regions Science and Technology, 2019, 158: 195-220 doi: 10.1016/j.coldregions.2018.08.020 [6] Brown TG, Määttänen M. Comparison of Kemi-I and Confederation Bridge cone ice load measurement results. Cold Regions Science and Technology, 2009, 55(1): 3-13 doi: 10.1016/j.coldregions.2008.04.005 [7] Timco GW, Johnston M. Ice loads on the Molikpaq in the Canadian Beaufort Sea. Cold Regions Science and Technology, 2003, 37: 51-68 doi: 10.1016/S0165-232X(03)00035-1 [8] Huang Y. Model test study of the nonsimultaneous failure of ice before wide conical structures. Cold Regions Science and Technology, 2010, 63(3): 87-96 doi: 10.1016/j.coldregions.2010.06.004 [9] 梁云芳, 王迎晖, 廖又明等. 冰水池发展现状及趋势. 舰船科学技术, 2015, 37(S1): 21-26 (Liang Yunfang, Wang Yinghui, Liao Youming, et al. Development trends of ice basin. Ship Science and Technology, 2015, 37(S1): 21-26 (in Chinese) [10] 黄焱, 孙策, 田育丰. 气垫平台破冰阻力的模型试验研究. 力学学报, 2021, 53(3): 714-727 (Huang Yan, Sun Ce, Tian Yufeng. Experimental study of the ice breaking resistance on an air cushion platform. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 714-727 (in Chinese) doi: 10.6052/0459-1879-20-418 [11] Kärnä T, Turunen R. Dynamic response of narrow structures to ice crushing. Cold Regions Science and Technology, 1989, 17: 173-187 doi: 10.1016/S0165-232X(89)80007-2 [12] van den Berg M, Lubbad R, Løset S. Repeatability of ice-tank tests with broken ice. Marine Structures, 2020, 74: 102827 doi: 10.1016/j.marstruc.2020.102827 [13] Jou O, Celigueta MA, Latorre S, et al. A bonded discrete elementmethod for modeling ship-ice interactions in broken and unbroken sea ice fields. Computational Particle Mechanics, 2019, 6: 739-765 doi: 10.1007/s40571-019-00259-8 [14] Su B, Riska K, Moan T. A numerical method for the prediction of ship performance in level ice. Cold Regions Science and Technology, 2010, 60: 177-188 doi: 10.1016/j.coldregions.2009.11.006 [15] Zhou L, Gao J, Li D. An engineering method for simulating dynamic interaction of moored ship with first-year ice ridge. Ocean Engineering, 2019, 171: 417-428 doi: 10.1016/j.oceaneng.2018.11.027 [16] 倪宝玉, 黄其, 陈绾绶等. 计及流体影响的船舶回转冰阻力数值模拟. 中国舰船研究, 2020, 15(2): 1-7 (Ni Baoyu, Huang Qi, Chen Wanshou, et al. Numerical simulation of ice resistance of ship turning in level ice zone considering fluid effects. Chinese Journal of Ship Research, 2020, 15(2): 1-7 (in Chinese) [17] 季顺迎. 计算颗粒力学及工程应用. 北京: 科学出版社, 2018(Ji Shunying. Computational Mechanics of Granular Mechanics and Its Applications. Beijing: Science Press, 2018 (in Chinese)) [18] Long X, Liu S, Ji S. Breaking characteristics of ice cover and dynamic ice load on upward-downward conical structures based on DEM simulations. Computational Particulate Mechanics, 2021, 8: 297-313 doi: 10.1007/s40571-020-00331-8 [19] Suyuthi A, Leira BJ, Risk K. Fatigue damage of ship hulls due to local ice-induced stresses. Applied Ocean Research, 2013, 42: 87-104 doi: 10.1016/j.apor.2013.05.003 [20] Kim JH, Kim Y. Numerical simulation on the ice-induced fatigue damage of ship structural members in broken ice fields. Marine Structures, 2019, 66: 83-105 doi: 10.1016/j.marstruc.2019.03.002 [21] Kärnä T, Kamesaki K, Tsukud H. A numerical model for dynamic ice-structure interaction. Computers and Structures, 1999, 72: 645-658 doi: 10.1016/S0045-7949(98)00337-X [22] 张健, 张淼溶, 万正权等. 冰材料模型在船-冰碰撞结构响应数值仿真中的应用研究. 中国造船, 2013, 54(4): 100-107 (Zhang Jian, Zhang Miaorong, Wan Zhengquan, et al. Research on ice material model applied in numerical simulation of ship structure response under iceberg collision. Shipbuilding of China, 2013, 54(4): 100-107 (in Chinese) doi: 10.3969/j.issn.1000-4882.2013.04.012 [23] 王键伟, 段庆林, 季顺迎. 冰区航行中船舶结构冰载荷的现场测量与反演方法研究进展. 力学进展, 2020, 50: 202000 (Wang Jianwei, Duan Qinglin, Ji Shunying. Research progress of field measurements and inversion methods of ice loads on ship structure during ice navigation. Advances in Mechanics, 2020, 50: 202000 (in Chinese) [24] 刘俊杰, 夏劲松, 金言等. 冰-水耦合作用下船舶与浮冰碰撞动响应数值仿真研究. 船舶力学, 2020, 24(5): 651-660 (Liu Junjie, Xia Jinsong, Jin Yan, et al. Numerical simulation of dynamic response of collision between ship and floating ice under ice-water coupling effect. Journal of Ship Mechanics, 2020, 24(5): 651-660 (in Chinese) doi: 10.3969/j.issn.1007-7294.2020.05.011 [25] Tuhkuri J, Polojärvi A. A review of discrete element simulation of ice-structure interaction. Philosophical Transactions Royal Society A, 2018, 376: 20170335 doi: 10.1098/rsta.2017.0335 [26] 刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰荷载的高性能扩展多面体离散元方法. 力学学报, 2019, 51(6): 1720-1739 (Liu Lu, Yin Zhenyu, Ji Shunying. High-performance dilated polyhedral based DEM for ice loads on ship and oshore platform structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1720-1739 (in Chinese) doi: 10.6052/0459-1879-19-250 [27] Liu L, Ji S. A contact detection method for arbitrary dilated polyhedron combining the potential function and geometry calculation. International Journal of Numerical Method in Engineering, 2020, 121: 5742-5765 doi: 10.1002/nme.6522 [28] Kuutti J, Kolari K, Marjavaara P. Simulation of ice crushing experiments with cohesive surface methodology. Cold Regions Science and Technology, 2013, 92: 17-28 doi: 10.1016/j.coldregions.2013.03.008 [29] Wang F, Zou ZJ, Zhou L, et al. A simulation study on the interaction between sloping marine structure and level ice based on cohesive element model. Cold Regions Science and Technology, 2018, 149: 1-15 doi: 10.1016/j.coldregions.2018.01.022 [30] Ye LY, Wang C, Chang X, et al. Propeller-ice contact modeling with peridynamics. Ocean Engineering, 2017, 139: 54-64 doi: 10.1016/j.oceaneng.2017.04.037 [31] Wang C, Xiong WP, Chang X, et al. Analysis of variable working conditions for propeller-ice interaction. Ocean Engineering, 2018, 156: 277-293 doi: 10.1016/j.oceaneng.2018.02.026 [32] Liu RW, Xue YZ, Lu XK, et al. Simulation of ship navigation in ice rubble based on peridynamics. Ocean Engineering, 2018, 148: 286-298 doi: 10.1016/j.oceaneng.2017.11.034 [33] Xue Y, Liu R, Liu Y, et al. Numerical simulations of the ice load of a ship navigating in level ice using peridynamics. Computer Modeling in Engineering & Sciences, 2019, 121(2): 523-550 [34] 徐佩, 王超, 郭春雨等. 基于近场动力学数值方法的冰吊舱推进器接触判断研究. 力学学报, 2021, 53(5): 1383-1401 (Xu Pei, Wang Chao, Guo Chunyu, et al. Research on contact judgment of ice-podded propulsor based on numerical method of perdynamics. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1383-1401 (in Chinese) doi: 10.6052/0459-1879-21-001 [35] Su B, Riska K, Moan T. Numerical study of ice-induced loads on ship hulls. Marine Structures, 2011, 24: 132-152 doi: 10.1016/j.marstruc.2011.02.008 [36] Zhou L, Gao J, Xu S, et al. A numerical method to simulate ice drift reversal for moored ships in level ice. Cold Regions Science and Technology, 2018, 152: 35-47 doi: 10.1016/j.coldregions.2018.04.008 [37] Zhang N, Zheng X, Ma Q, et al. A numerical study on ice failure process and ice-ship interactions by smoothed particle hydrodynamics. International Journal of Naval Architecture and Ocean Engineering, 2019, 11: 796-808 doi: 10.1016/j.ijnaoe.2019.02.008 [38] Kim JH, Kim Y, Kim HS, et al. Numerical simulation of ice impacts on ship hulls in broken ice fields. Ocean Engineering, 2019, 182: 211-221 doi: 10.1016/j.oceaneng.2019.04.040 [39] Liu L, Ji S. Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field. Applied Ocean Research, 2018, 75: 53-65 doi: 10.1016/j.apor.2018.02.022 [40] Shen HH, Hibler WD, Leppäranta M. On applying granular flow theory to a deforming broken ice field. Acta Mechanica, 1986, 63(1-4): 143-160 doi: 10.1007/BF01182545 [41] 杨冬宝, 高俊松, 刘建平等. 基于DEM-FEM 耦合方法的海上风机结构冰激振动分析. 力学学报, 2021, 53(3): 682-692 (Yang Dongbao, Gao Junsong, Liu Jianping, et al. Analysis of ice-inducted structure vibration of offshore wind turbines based on DEM-FEM coupled method. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 682-692 (in Chinese) doi: 10.6052/0459-1879-20-386 [42] Janßen CF, Mierke D, Rung T. On the development of an efficient numerical ice tank for the simulation of fluid-ship-rigid-ice interactions on graphics processing units. Computers and Fluids, 2017, 155: 22-32 doi: 10.1016/j.compfluid.2017.05.006 [43] 王帅霖, 季顺迎. 锥体导管架海洋平台冰激振动的DEM-FEM耦合分析及高性能算法. 海洋学报, 2017, 39(12): 98-108 (Wang Shuialin, Ji Shunying. Ice induced vibration of conical platform based on coupled DEM-FEM model with high efficiency algorithm. Haiyang Xuebao, 2017, 39(12): 98-108 (in Chinese) [44] 季顺迎, 李春花, 刘煜. 海冰离散元模型的研究回顾及展望. 极地研究, 2012, 24(4): 315-329 (Ji Shunying, Li Chunhua, Liu Yu. A review of advances in sea ice discrete element models. Chinese Journal of Polar Research, 2012, 24(4): 315-329 (in Chinese) [45] 韩端锋, 乔岳, 薛彦卓等. 冰区航行船舶冰阻力研究方法综述. 船舶力学, 2017, 21(8): 1041-1054 (Han Duanfeng, Qiao Yue, Xue Yanzhuo, et al. A review of ice resistance research methods for ice-going ships. Journal of Ship Mechanics, 2017, 21(8): 1041-1054 (in Chinese) doi: 10.3969/j.issn.1007-7294.2017.08.014 [46] 徐莹, 胡志强, 陈刚等. 船冰相互作用研究方法综述. 船舶力学, 2019, 23(1): 110-124 (Xu Ying, Hu Zhiqiang, Chen Gang, et al. Overview of the investigating methods for ship-ice interaction analysis. Journal of Ship Mechanics, 2019, 23(1): 110-124 (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.01.012 [47] Xue Y, Liu R, Li Z, et al. A review for numerical simulation methods of ship-ice interaction. Ocean Engineering, 2020, 215: 107853 doi: 10.1016/j.oceaneng.2020.107853 [48] Long X, Liu S, Ji S. Discrete element modelling of relationship between ice breaking length and ice load on conical structure. Ocean Engineering, 2020, 201: 107152 doi: 10.1016/j.oceaneng.2020.107152 [49] 龙雪, 刘社文, 季顺迎. 水位变化对正倒锥体冰载荷影响的离散元分析. 力学学报, 2019, 51(1): 74-84 (Long Xue, Liu Shewen, Ji Shunying. Influence of water level on ice load on upward-downward conical structure based on DEM analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 74-84 (in Chinese) doi: 10.6052/0459-1879-18-342 [50] Tian X, Zou Z, Yu J, et al. Review on advances in research of ice loads on ice-going ships. Journal of Ship Mechanics, 2015, 19(3): 337-348 [51] 王帅霖, 刘社文, 季顺迎. 基于GPU并行的锥体导管架平台结构冰激振动DEM-FEM耦合分析. 工程力学, 2019, 36(10): 28-39 (Wang Shuailin, Liu Shewen, Ji Shunying. Coupled discrete-finite element analysis for ice-induced vibration of conical jacket platform based on GPU-based paraller algorithm. Engineering Mechanics, 2019, 36(10): 28-39 (in Chinese) [52] Long X, Ji S, Wang Y. Validation of microparameters in discrete element modeling of sea ice failure process. Particulate Science and Technology, 2019, 37(5): 546-55 [53] Timco GW, Weeks WF. A review of engineering properties of sea ice. Cold Regions Science and Technology, 2010, 60: 107-129 doi: 10.1016/j.coldregions.2009.10.003 [54] Sain T, Narasimhan R. Constitutive modeling of ice in the high strain rate regime. International Journal of Solids and Structures, 2011, 48: 817-827 doi: 10.1016/j.ijsolstr.2010.11.016 [55] 王安良, 许宁, 毕祥军等. 卤水体积和应力速率影响下海冰强度的统一表征. 海洋学报, 2016, 38(9): 126-133Wang Anliang, Xu Ning, Bi Xiangjun, et al. Unified representation of sea ice strengths under influences of brine volume and stress rate. Haiyang Xuebao, 2016, 38(9): 126-133 (in Chinese) [56] Ji S, Di S, Long X. DEM simulation of uniaxial compressive and flexural strength of sea ice: parametric study of inter-particle bonding strength. ASCE Journal of Engineering Mechanics, 2017, 143: 4016010 [57] Ji S, Wang A, Su J, et al. Experimental studies on elastic modulus and flexural strength of sea ice in the Bohai Sea. ASCE Journal of Cold Regions Engineering, 2011, 25(4): 182-195 doi: 10.1061/(ASCE)CR.1943-5495.0000035 [58] Kellnera L, Stenderb M, von Bock und Polacha RUF, et al. Establishing a common database of ice experiments and using machine learning to understand and predict ice behavior. Cold Regions Science and Technology, 2019, 162: 56-73 doi: 10.1016/j.coldregions.2019.02.007 [59] 李想, 严子铭, 柳占立. 机器学习与计算力学的结合及应用初探. 科学通报, 2019, 64(7): 635-648 (Li Xiang, Yan Ziming, Liu Zhanli. Combination and application of machine learning and computational mechanics. Chinese Science Bulletin, 2019, 64(7): 635-648 (in Chinese) doi: 10.1360/N972019-00005 [60] 沈泓萃, 赵峰. 舰船综合航行性能虚拟试验环境(数值水池)顶层研究. 舰船科学技术, 2007, 29(2): 17-21 (Shen Hongcui, Zhao Feng. Top-layer research on virtual test environment of ship integrated navigational performance. Ship Science and Technology, 2007, 29(2): 17-21 (in Chinese) [61] 朱德祥, 沈泓萃, 洪方文等. 船模数值水池框架及其研究基础. 水动力学研究与进展, 2008, 23(1): 24-32 (Zhu Dexiang, Shen Hongcui, Hong Fangwen, et al. The framework of ship model numerical towing tank and research fundament in China. Journal of Hydrodynamics, 2008, 23(1): 24-32 (in Chinese) [62] 梁修锋, 杨建民, 李俊等. 面向海洋工程应用的数值波浪水池. 中国科学: 物理学 力学 天文学, 2011, 41(2): 112-122 (Liang Xiufeng, Yang Jianmin, Li Jun, et al. Numerical wave tank for the application in ocean engineering. Scientia Sinica:Physica,Mechanica &Astronomica, 2011, 41(2): 112-122 (in Chinese) [63] 冯大奎, 鲁晶晶, 魏鹏等. 基于Level-set 方法的三维数值水池造波研究. 水动力学研究与进展, 2018, 33(4): 435-444 (Feng Dakui, Lu Jingjing, Wei Peng, et al. , The research of wave-generating in 3-D numerical wave tank based on Level-set method. Chinese Journal of Hydrodynamics, 2018, 33(4): 435-444 (in Chinese) [64] 李百齐, 刘晓东, 何术龙等. 数值水池集成软件系统概念设计研究. 中国造船, 2013, 54(2): 11-16 (Li Baiqi, Liu Xiaodong, He Shulong, et al. Study on conceptual design of numerical tank integrated software system. Shipbuilding of China, 2013, 54(2): 11-16 (in Chinese) doi: 10.3969/j.issn.1000-4882.2013.02.002 [65] 赵峰, 吴乘胜, 黄少锋等. 数值水池路线图. 船舶力学, 2014, 18(8): 924-932 (Zhao Feng, Wu Chengsheng, Huang Shaofeng, et al. Route map on virtual tank. Journal of Ship Mechanics, 2014, 18(8): 924-932 (in Chinese) doi: 10.3969/j.issn.1007-7294.2014.08.007 [66] 赵峰, 吴乘胜, 张志荣等. 实现数值水池的关键技术初步分析. 船舶力学, 2015, 19(10): 1209-1220 (Zhao Feng, Wu Chengsheng, Zhang Zhirong, et al. Preliminary analysis of key issues in the development of numerical tank. Journal of Ship Mechanics, 2015, 19(10): 1209-1220 (in Chinese) doi: 10.3969/j.issn.1007-7294.2015.10.005 [67] 陈晓东, 王安良, 季顺迎. 海冰在单轴压缩下的韧-脆转化机理及破坏模式. 中国科学: 物理学 力学 天文学, 2018, 48(12): 24-35 (Chen Xiaodong, Wang Anliang, Ji Shunying. The study on brittle-ductile transition mechanism and failure mode of sea ice under uniaxial compression. Scientia Sinica:Physica,Mechanica &Astronomica, 2018, 48(12): 24-35 (in Chinese) [68] 陈晓东, 崔海鑫, 王安良等. 基于巴西盘试验的海冰拉伸强度研究. 力学学报, 2020, 52(3): 625-634 (Chen Xiaodong, Cui Haixin, Wang Anliang, et al. Experimental study on sea ice tensile strength based on Brazilian tests. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 625-634 (in Chinese) doi: 10.6052/0459-1879-20-036 [69] Schulson EM, Buck S. The ductile-to-brittle transition and ductile failure envelopes of orthotropic ice under biaxial compression. Acta Materialia, 1995, 43(10): 3661-3668 [70] Bonath V, Edeskar T, Lintzen N, et al. Properties of ice from first-year ridges in the Barents Sea and Fram Strait. Cold Regions Science and Technology, 2019, 168: 102890 doi: 10.1016/j.coldregions.2019.102890 [71] 韩端锋, 王永魁, 鞠磊等. 海水结冰过程中冰晶生长的相场模拟. 哈尔滨工程大学学报, 2020, 41(1): 1-8 (Han Duanfeng, Wang Yongkui, Ju Lei, et al. Phase field simulation of ice crystal growth in seawater freezing process. Journal of Harbin Engineering University, 2020, 41(1): 1-8 (in Chinese) [72] Timco GW, O'Brien S. Flexural strength equation for sea ice. Cold Regions Science and Technology, 1994, 22: 285-298 doi: 10.1016/0165-232X(94)90006-X [73] Li J, Zhang LM, Lu P, et al. Experimental study on the effect of porosity on the uniaxial compressive strength of sea ice in Bohai Sea. Science China Technological Sciences, 2011, 54(9): 2429-2436 doi: 10.1007/s11431-011-4482-1 [74] Ji S, Di S, Liu S. Analysis of ice load on conical structure with discrete element method. Engineering Computations, 2015, 32(4): 1121-1134 doi: 10.1108/EC-04-2014-0090 [75] Schulson EM. Brittle failure of ice. Engineering Fracture Mechanics, 2001, 68: 1938-1887 [76] Renshaw CE, Golding N, Schulson EM. Maps for brittle and brittle-like failure in ice. Cold Regions Science and Technology, 2014, 97: 1-6 doi: 10.1016/j.coldregions.2013.09.008 [77] Hendrikse H, Metrikine A. Interpretation and prediction of ice induced vibrations based on contact area variation. International Journal of Solids and Structures, 2015, 75: 336-348 [78] Jordaan IJ. Mechanics of ice-structure interaction. Engineering Fracture Mechanics, 2001, 68(17-18): 1923-1960 doi: 10.1016/S0013-7944(01)00032-7 [79] Sanderson TJO. Ice Mechanics Risks to Offshore Structures. Graham and Trotman, London, UK, 1988 [80] Palmer AC, Dempsey JP, Masterson DM. A revised ice pressure-area curve and a fracture mechanics explanation. Cold Regions Science and Technology, 2009, 56(2): 73-76 [81] Sodhi DS. Crushing failure during ice-structure interaction. Engineering Fracture Mechanics, 2001, 68(17): 1889-1921 [82] Wells J, Jordaan IJ. Small-scale laboratory experiments on the indentation failure of polycrystalline ice in compression: Main results and pressure distribution. Cold Regions Science and Technology, 2010, 65(3): 314-325 [83] Lemström I, Polojärvia A, Tuhkuri J. Numerical experiments on ice-structure interaction in shallow water. Cold Regions Science and Technology, 2020, 176: 103088 doi: 10.1016/j.coldregions.2020.103088 [84] 季顺迎, 王帅霖, 刘璐. 极区船舶及海洋结构冰荷载的离散元分析. 科技导报, 2017, 35(3): 71-80 (Ji Shunying, Wang Shuailin, Liu Lu. Analysis of ice load on ship and offshore structure in polar region with discrete element method. Science &Technology Review, 2017, 35(3): 71-80 (in Chinese) [85] Jang H, Kim M. Dynamic ice force estimation on a conical structure by discrete element method. International Journal of Naval Architecture and Ocean Engineering, 2021, 13: 136-146 doi: 10.1016/j.ijnaoe.2021.01.003 [86] 朱红日, 季顺迎, 刘璐. 基于切割算法的碎冰区构造及离散元分析. 计算力学学报, 2019, 36(4): 454-463 (Zhu Hongri, Ji Shunying, Liu Lu. Construction of broken ice field with Voronoi tessellation algorithm and its DEM simulations. Chinese Journal of Computational Mechanics, 2019, 36(4): 454-463 (in Chinese) doi: 10.7511/jslx20180410001 [87] 朱红日, 季顺迎. 冰脊压剪试验及其对直立结构冰载荷的离散元分析. 力学与实践, 2021, 43(2): 234-243 (Zhu Hongri, Ji Shunying. Discrete element analysis of punch through test of ice ridge and its loads on vertical structure. Mechanics in Engineering, 2021, 43(2): 234-243 (in Chinese) doi: 10.6052/1000-0879-20-329 [88] Lou W, Jiang D, Wu T, et al. Numerical simulation of an ice-strengthened bulk carrier in brash ice channel. Ocean Engineering, 2020, 196: 106830 doi: 10.1016/j.oceaneng.2019.106830 [89] 童波, 涂勋程, 谷家扬等. 基于参数化设计的浮冰区船舶冰阻力研究. 船舶力学, 2019, 23(7): 755-762 (Tong Bo, Tu Xuncheng, Gu Jiayang, et al. Study on ship ice resistance based on parametric design of brash ice zone. Journal of Ship Mechanics, 2019, 23(7): 755-762 (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.07.001 [90] Islam M, Mills, J, Gash R. A literature survey of broken ice-structure interaction modelling methods for ships and offshore platforms. Ocean Engineering, 2021, 221: 108527 doi: 10.1016/j.oceaneng.2020.108527 [91] Hansen E, Løset S. Modelling floating offshore units moored in broken ice: comparing simulations with ice tank tests. Cold Regions Science and Technology, 1999, 29: 107-119 doi: 10.1016/S0165-232X(99)00017-8 [92] Pradana MR, Qian X. Bridging local parameters with global mechanical properties in bonded discrete elements for ice load prediction on conical structures. Cold Regions Science and Technology, 2020, 173: 102960 doi: 10.1016/j.coldregions.2019.102960 [93] 狄少丞, 季顺迎. 基于GPU离散元模拟的海冰与自升式海洋平台结构相互作用研究. 力学学报, 2014, 46(4): 561-571 (Di Shaocheng Ji Shunying. GPU-based discrete element modelling of interaction between sea ice and jack-up platform structure. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 561-571 (in Chinese) doi: 10.6052/0459-1879-13-400 [94] Sand B. Nonlinear finite element simulations of ice forces on offshore structures. [PhD Thesis]. Luleå University of Technology, 2008 [95] Tan X, Su B, Riska K, et al. A six-degrees-of-freedom numerical model for level ice-ship interaction. Cold Regions Science and Technology, 2013, 92: 1-16 doi: 10.1016/j.coldregions.2013.03.006 [96] Ni BY, Han DF, Di SC, et al. On the development of ice-water-structure interaction. Journal of Hydrodynamics, 2020, 32(4): 629-652 doi: 10.1007/s42241-020-0047-8 [97] 岳前进, 张大勇, 刘圆等. 渤海抗冰导管架平台失效模式分析. 海洋工程, 2008, 26(1): 18-23 (Yue Qianjin, Zhang Dayong, Liu Yuan, et al. Failure modes analysis of ice-resistant compliant structures based on monitoring oil platforms in Bohai Gulf. The Ocean Engineering, 2008, 26(1): 18-23 (in Chinese) doi: 10.3969/j.issn.1005-9865.2008.01.003 [98] 车啸飞, 张大勇, 岳前进等. 基于实测的导管架海洋平台振动对人员安全评价. 海洋工程, 2011, 29(4): 69-73 (Che Xiaofei, Zhang Dayong, Yue Qianjin, et al. Human safety assessment based on field monitoring vibrations of the offshore jacket platforms. The Ocean Engineering, 2011, 29(4): 69-73 (in Chinese) [99] Frederking R, Sudom D. Maximum ice force on the Molikpaq during the April 12, 1986 event. Cold Regions Science and Technology, 2006, 46(3): 147-166 doi: 10.1016/j.coldregions.2006.08.019 [100] Timco GW, Johnston M. Ice loads on the caisson structures in the Canadian Beaufort Sea. Cold Regions Science and Technology, 2004, 38(2-3): 185-209 doi: 10.1016/j.coldregions.2003.10.007 [101] Shawn S, Brian V, Neil B. Experimental investigation of a highly skewed propeller in ice. Journal of Offshore Mechanics and Arctic Engineering, 2001, 123(4): 191-197 doi: 10.1115/1.1408942 [102] 杨红军, 车驰东, 张维竞等. 冰载荷冲击下的船舶推进轴系瞬态扭转振动响应分析. 船舶力学, 2015, 19: 176-181 (Yang Hongjun, Che Chidong, Zhang Weijing, et al. Transient torsional vibration analysis for ice impact of ship propulsion shaft. Journal of Ship Mechanics, 2015, 19: 176-181 (in Chinese) [103] Lubbad R, Løset S. A numerical model for real-time simulation of ship-ice interaction. Cold Regions Science and Technology, 2011, 65: 111-127 doi: 10.1016/j.coldregions.2010.09.004 [104] Tsarau A, Løset S. Modelling the hydrodynamic effects associated with station-keeping in broken ice. Cold Regions Science and Technology, 2015, 118: 76-90 doi: 10.1016/j.coldregions.2015.06.019 [105] Pradana MR, Qian X, Ahmed A. Efficient discrete element simulation of managed ice actions on moored floating platforms. Ocean Engineering, 2019, 190: 106483 doi: 10.1016/j.oceaneng.2019.106483 [106] Matlock H, Dawkin WP, Panak JJ. Analytical model for ice structure interaction. Journal of Engineering Mechanics, ASCE, 1971, 97(4): 1083-1092 [107] Huang GJ, Liu PF. A dynamic model for ice-induced vibration of structures. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the ASME, 2009, 131(1): 011501 doi: 10.1115/1.2979795 [108] 黄国君. 冰激振动中的锁频共振分析. 力学学报, 2021, 53(3): 693-702 (Huang Guojun. Study on frequency lock-in resonance in ice-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 693-702 (in Chinese) doi: 10.6052/0459-1879-21-087 [109] 屈衍, 黄子威, 邹科等. 冰激结构频率锁定振动的发生机理及简单分析方法. 力学学报, 2021, 53(3): 728-739 (Qu Yan, Huang Ziwei, Zou Ke, et al. Mechanism and simple analysis method of ice induced frequency lock-in vibration of offshore structures. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 728-739 (in Chinese) doi: 10.6052/0459-1879-20-382 [110] 岳前进, 许宁, 崔航等. 导管架平台安装锥体降低冰振效果研究. 海洋工程, 2011, 29(2): 18-24 (Yue Qianjin, Xu Ning, Cui Hang, et al. Effect of adding cone to mitigate ice-induced vibration. The Ocean Engineering, 2011, 29(2): 18-24 (in Chinese) doi: 10.3969/j.issn.1005-9865.2011.02.003 [111] Wang Y, Yue Q, Guo F, et al. Performance evaluation of a new ice-resistant jacket platform based on field monitoring. Cold Regions Science and Technology, 2012, 71: 44-53 doi: 10.1016/j.coldregions.2011.10.009 [112] Wang S, Ji S. Coupled DEM-FEM Analysis of ice-induced vibrations of conical jacket platform based on domain decomposition method. International Journal of Offshore and Polar Engineering, 2018, 28(2): 190-199 doi: 10.17736/ijope.2018.ik03 [113] Lindqvist G. A straightforward method for calculation of ice resistance of ships. Proceedings of POAC, 1989: 722-735 [114] Cho SR, Lee S. A prediction method of ice breaking resistance using a multiple regression analysis. International Journal of Naval Architecture and Ocean Engineering, 2015, 7: 708-719 doi: 10.1515/ijnaoe-2015-0050 [115] Gong H, Polojarvi A, Tuhkuri J. Discrete element simulation of the resistance of a ship in unconsolidated ridges. Cold Regions Science and Technology, 2019, 167: 102855 doi: 10.1016/j.coldregions.2019.102855 [116] Keijdener C, Hendrikse H, Metrikine A. The effect of hydrodynamics on the bending failure of level ice. Cold Regions Science and Technology, 2018, 153: 106-119 doi: 10.1016/j.coldregions.2018.04.019 [117] 骆婉珍, 郭春雨, 吴铁成等. 基于SPIV的船体附着冰对尾流场影响试验研究. 中国科学: 技术科学, 2017, 47(7): 738-748 (Luo Wanzhen, Guo Chunyu, Wu Tiecheng, et al. The experimental investigation of nominal wake of ice-going ship attached with ice based on SPIV technology. Scientia Sinica: Technologica, 2017, 47(7): 738-748 (in Chinese) doi: 10.1360/N092016-00439 [118] Hopkins MA. Discrete element modeling with dilated particles. Engineering Computations, 2004, 2/3/4(21): 422-430 [119] Hopkins MA. Four stages of pressure ridging. Journal of Geophysical Research, 1998, 103: 21883-21891 doi: 10.1029/98JC01257 [120] Sun S, Shen HH. Simulation of pancake ice load on a circular cylinder in a wave and current field. Cold Regions Science and Technology, 2012, 78: 31-39 doi: 10.1016/j.coldregions.2012.02.003 [121] Huang L, Tuhkuri J, Igrec B, et al. Ship resistance when operating in floating ice floes: A combined CFD&DEM approach. Marine Structures, 2020, 74: 102817 doi: 10.1016/j.marstruc.2020.102817 [122] Wu Z, Yu F, Zhang P, et al. Micro-mechanism study on rock breaking behavior under water jet impact using coupled SPH-FEM/DEM method with Voronoi grains. Engineering Analysis with Boundary Elements, 2019, 108: 472-483 doi: 10.1016/j.enganabound.2019.08.026 [123] Yao LM, Xiao ZM, Liu JB, et al. A new multi-field coupled dynamic analysis method for fracturing pipes. Journal of Petroleum Science and Engineering, 2021, 196: 108023 doi: 10.1016/j.petrol.2020.108023 [124] Li B, Wang C, Li Y, et al. Dynamic response analysis of retaining dam under the impact of solid-liquid two-phase debris flow based on the coupled SPH-DEM-FEM method. Geofluids, 2020: 6635378 [125] Ji S, Wang S. A coupled discrete-finite element method for the ice-induced vibrations of a conical jacket platform with a GPU-based parallel algorithm. International Journal of Computational Methods, 2020, 17(4): 1850147 doi: 10.1142/S0219876218501475 [126] 阳杰, 徐锐, 黄群等. 数据驱动计算力学研究进展. 固体力学学报, 2020, 41(1): 1-14 (Yang Jie, Xu Rui, Huang Qun, et al. Data-driven computational mechanics: a review. Chinese Journal of Solid Mechanics, 2020, 41(1): 1-14 (in Chinese) [127] Yulmetov R, Løset S. Validation of a numerical model for iceberg towing in broken ice. Cold Regions Science and Technology, 2017, 138: 36-45 doi: 10.1016/j.coldregions.2017.03.002 [128] Ince ST, Kumar A, Park DK, et al. An advanced technology for structural crashworthiness analysis of a ship colliding with an ice-ridge: Numerical modelling and experiments. International Journal of Impact Engineering, 2017, 110: 112-122 doi: 10.1016/j.ijimpeng.2017.02.014 [129] Bateman SP, Orzech MD, Calantoni J. Simulating the mechanics of sea ice using the discrete element method. Mechanics Research Communications, 2019, 99: 73-78 doi: 10.1016/j.mechrescom.2019.06.009 [130] 刘璐, 胡冰, 季顺迎. 破冰船引航下极地船舶结构冰荷载的离散元分析. 水利水运工程学报, 2020, 3: 11-18 (Liu Lu, Hu Bing, Ji Shunying. Discrete element analysis of ice loads on polar ships under pilotage of icebreaker. Hydro-Science and Engineering, 2020, 3: 11-18 (in Chinese) [131] International Organization for Standardization. Requirements concerning: Polar Class. 2011: I21-I26 [132] 刘璐, 曹晶, 张志刚等. 冰区航行中船体结构冰压力分布特性的离散元分析. 船舶力学, 2021, 25(4): 253-261 (Liu Lu, Cao Jing, Zhang Zhigang, et al. DEM analysis for the distribution of ice pressure on ship hull during navigating in ice regions. Journal of Ship Mechanics, 2021, 25(4): 253-261 (in Chinese) [133] 田于逵, 季少鹏, 王迎晖等. CSSRC小型冰水池中海冰模拟与测试研究. 海洋环境科学, 2021, 40(2): 277-286 (Tian Yukui, Ji Shaopeng, Wnag Yinghui, et al. Research on sea ice simulation and measurement in small ice model basin of CSSRC. Marine Environmental Science, 2021, 40(2): 277-286 (in Chinese) doi: 10.12111/j.mes.20190253 [134] Huang Y, Sun J, Ji S, et al. Experimental study on the resistance of a transport ship navigating in level ice. Journal of Marine Science and Application, 2016, 15: 105-111 doi: 10.1007/s11804-016-1351-0 -