EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑胎路多点接触的电动汽车−路面耦合系统振动分析

李韶华 冯桂珍 丁虎

李韶华, 冯桂珍, 丁虎. 考虑胎路多点接触的电动汽车−路面耦合系统振动分析. 力学学报, 2021, 53(9): 2554-2568 doi: 10.6052/0459-1879-21-239
引用本文: 李韶华, 冯桂珍, 丁虎. 考虑胎路多点接触的电动汽车−路面耦合系统振动分析. 力学学报, 2021, 53(9): 2554-2568 doi: 10.6052/0459-1879-21-239
Li Shaohua, Feng Guizhen, Ding Hu. Vibration analysis of electric vehicle-road coupling system considering tire-road multi-point contact. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2554-2568 doi: 10.6052/0459-1879-21-239
Citation: Li Shaohua, Feng Guizhen, Ding Hu. Vibration analysis of electric vehicle-road coupling system considering tire-road multi-point contact. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2554-2568 doi: 10.6052/0459-1879-21-239

考虑胎路多点接触的电动汽车−路面耦合系统振动分析

doi: 10.6052/0459-1879-21-239
基金项目: 国家自然科学基金资助项目(11972238)
详细信息
    作者简介:

    冯桂珍, 副教授, 主要研究方向: 车辆系统动力学与控制. E-mail: fenggz@stdu.edu.cn

  • 中图分类号: U461.1

VIBRATION ANALYSIS OF ELECTRIC VEHICLE-ROAD COUPLING SYSTEM CONSIDERING TIRE-ROAD MULTI-POINT CONTACT

  • 摘要: 轮毂电机驱动电动汽车的簧下质量大, 使得轮胎动载荷增加, 且电机激励进一步加剧车轮振动. 同时, 轮胎与路面单点接触的简化模型, 其动力学计算结果与实际存在差别. 鉴于此, 考虑电机的电磁激励、胎路多点接触和非线性地基, 建立了电动汽车−路面系统机电耦合动力学模型, 通过Galerkin法推导了非线性地基梁的垂向振动, 利用积化和公式推导了非线性地基梁中非线性项积分的精确表达式, 提出了路面截断阶数选取的简易方法, 并通过路面位移响应的收敛性进行了验证. 在此基础上, 研究了胎路多点接触、非线性地基、电机激励、车速、路面不平顺幅值等对路面及车辆响应的影响. 结果表明, 非线性地基及多点接触对车辆响应的影响中, 轮胎动载荷的影响最大, 车身加速度和悬架动挠度的影响较小, 且考虑电机激励时, 二者对车辆响应的影响显著增大. 从对路面响应的影响看, 电机激励的影响最大, 非线性地基的影响次之, 多点接触的影响较小. 所建模型及研究方法可为电动汽车的垂向动力学分析提供一种新思路.

     

  • 图  1  电动汽车−路面系统动力学模型

    Figure  1.  Dynamic model of electric vehicle−road system

    图  2  接触点数对路面响应最大幅值的影响

    Figure  2.  Effects of the number of contact point on the maximum amplitude of road response

    图  3  非线性项积分的求解方法对比

    Figure  3.  Comparison of methods for nonlinear integral term

    图  4  线弹性地基梁的固有频率

    Figure  4.  Natural frequency of linear elastic foundation beam

    图  5  相邻频率的相对增量

    Figure  5.  Relative increment of adjacent frequencies

    图  6  截断阶数对路面响应最大幅值的影响

    Figure  6.  Effects of truncation order on maximum amplitude of road response

    图  7  B0 = 0.02 m时非线性地基、多点接触及电机激励对路面响应的影响

    Figure  7.  Effects of nonlinear foundation and multi-point contact and motor excitation on road response when B0 = 0.02 m

    图  8  B0 = 0.002 m时非线性地基、多点接触及电机激励对路面响应的影响

    Figure  8.  Effects of nonlinear foundation and multi-point contact and motor excitation on road response when B0 = 0.002 m

    图  9  非线性地基及多点接触对车身加速度的影响

    Figure  9.  Effects of nonlinear foundation and multi-point contact on acceleration of vehicle body

    图  11  非线性地基及多点接触对轮胎动载荷的影响

    Figure  11.  Effects of nonlinear foundation and multi-point contact on tire dynamic load

    图  12  非线性地基及多点接触对车辆响应的相对差别

    Figure  12.  Relative differences of nonlinear foundation and multi-point contact on vehicle response

    图  10  非线性地基及多点接触对悬架动挠度的影响

    Figure  10.  Effects of nonlinear foundation and multi-point contact on suspension dynamic displacement

    图  13  不同车速时非线性地基及胎路多点接触对路面响应最大幅值的影响

    Figure  13.  Effects of nonlinear foundation and multi-point contact between tire and road on the maximum amplitude of road response at different speeds

    图  14  不同车速时非线性地基及胎路多点接触对路面响应的频域曲线

    Figure  14.  Frequency domain curves of the effects of non-linear foundation and multi-point contact between tire and road on the road response at different speeds

    图  15  路面二次位移

    Figure  15.  Road secondary displacement

    图  16  不同行驶速度下路面二次位移的最大幅值

    Figure  16.  Maximum amplitude of road secondary displacement at different speeds

    图  17  不同车速下非线性地基及多点接触对车辆响应最大幅值的影响

    Figure  17.  Effects of NF and MP on maximum amplitude of vehicle response at different speeds

    图  18  不同车速下非线性地基及多点接触对车辆响应的最大增幅

    Figure  18.  Maximum differences of NF and MP on vehicle response at different speeds

    图  19  地基弹性系数对路面响应最大幅值的影响

    Figure  19.  Effects of foundation elastic coefficient on maximum amplitude of road response

    图  20  地基线性弹性系数对车辆响应最大幅值的影响

    Figure  20.  Effects of foundation linear elastic coefficient on maximum amplitude of vehicle response

    21  地基非线性弹性系数对车辆响应最大幅值影响

    21.  Effects of foundation nonlinear elastic coefficient on maximum amplitude of vehicle response

    图  21  地基非线性弹性系数对车辆响应最大幅值影响(续)

    Figure  21.  Effects of foundation nonlinear elastic coefficient on maximum amplitude of vehicle response (continued)

    表  1  线弹性地基梁的固有频率及相邻频率差别

    Table  1.   Natural frequency and relative differences of adjacent frequencies of linear elastic foundation beam

    NMFrequency/HzDifference/%
    1 11.623 0 0
    10 11.623 9 0.002 6
    20 11.636 8 0.022 0
    30 11.692 8 0.075 5
    40 11.842 1 0.177 0
    50 12.150 9 0.331 6
    60 12.693 2 0.529 3
    70 13.539 1 0.743 7
    80 14.742 5 0.941 6
    90 16.335 2 1.096 8
    100 18.327 4 1.199 0
    110 20.714 3 1.252 0
    120 23.483 4 1.266 4
    130 26.619 4 1.254 1
    140 30.107 8 1.224 8
    150 33.935 7 1.186 0
    160 38.092 5 1.142 3
    170 42.569 7 1.097
    180 47.360 2 1.051 9
    190 52.458 6 1.008 1
    200 57.860 7 0.966 3
    210 63.562 8 0.926 7
    220 69.562 2 0.889 4
    230 75.856 7 0.854 5
    240 82.444 4 0.821 7
    250 89.323 9 0.791 0
    260 96.493 9 0.762 3
    270 103.953 4 0.735 5
    280 111.701 6 0.710 3
    290 119.737 7 0.686 6
    300 128.061 3 0.664 4
    下载: 导出CSV

    表  2  路面响应的最大幅值及相对增量

    Table  2.   Maximum amplitude of road response and relative difference

    B0/m Motor excitation NF LF Difference between NF and LF
    yr(SP)/m yr(MP)/m difference yr(SP)/m yr(MP)/m difference SP MP
    0.02 2.468 6 × 10−4 2.302 2 × 10−4 −6.74% 2.593 3 × 10−4 2.580 6 × 10−4 −0.49% −4.81% −10.79%
    × 4.205 0 × 10−4 4.199 6 × 10−4 −0.13% 4.426 7 × 10−4 4.430 9 × 10−4 0.09% −5.01% −5.22%
    difference 41.29% 45.18% 41.42% 41.76%
    0.002 1.976 6 × 10−4 1.957 3 × 10−4 −0.98% 2.069 5 × 10−4 2.066 9 × 10−4 −0.13% −4.49% −5.30%
    × 3.819 7 × 10−4 3.819 1 × 10−4 −0.02% 3.846 2 × 10−4 3.846 6 × 10−4 0.01% −0.69% −0.71%
    difference 48.25% 48.75% 46.19% 46.27%
    下载: 导出CSV
  • [1] 《中国公路学报》编辑部. 中国汽车工程学术研究综述﹒2017. 中国公路学报, 2017, 30(6): 1-197 (Editorial Department of China Journal of Highway and Transport. Review on China’s automotive engineering research progress﹒2017. China Journal of Highway and Transport, 2017, 30(6): 1-197 (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.06.001
    [2] Zhang XP, Liang YN, Yu EH, et al. Review of electric vehicle policies in China: Content summary and effect analysis. Renewable and Sustainable Energy Reviews, 2016, 70: 698-714
    [3] 李勇, 徐兴, 孙晓东等. 轮毂电机驱动技术研究概况及发展综述. 电机与控制应用, 2017, 44(6): 1-7 (Li Yong, Xu Xing, Sun Xiaodong, et al. Review and future development of in-wheel motor drive technology. Electric Machines & Control Application, 2017, 44(6): 1-7 (in Chinese) doi: 10.3969/j.issn.1673-6540.2017.06.001
    [4] 金智林, 陈国钰, 赵万忠. 轮毂电机驱动电动汽车的侧翻稳定性分析与控制. 中国机械工程, 2018, 29(15): 1772-1779 (Jin Zhilin, Chen Guoyu, Zhao Wanzhong. Rollover stability and control of in-wheel motor drive electric vehicles. China Mechanical Engineeering, 2018, 29(15): 1772-1779 (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.15.002
    [5] 张利鹏, 李亮, 祁炳楠等. 双电机分布式驱动汽车高速稳定性机电耦合控制. 机械工程学报, 2015, 51(16): 29-40 (Zhang Lipeng, Li Liang, Qi Bingnan, et al. High speed stability electromechanical coupling control for dual-motor distributed drive electric vehicle. Journal of Mechanical Engineering, 2015, 51(16): 29-40 (in Chinese) doi: 10.3901/JME.2015.16.029
    [6] 平先尧, 李亮, 程硕等. 四轮独立驱动汽车多工况路面附着系数识别研究. 机械工程学报, 2019, 55(22): 80-92 (Ping Xianyao, Li Liang, Cheng Shuo, et al. Tire-road friction coefficient estimators for 4WID electric vehicles on diverse road conditions. Journal of Mechanical Engineering, 2019, 55(22): 80-92 (in Chinese)
    [7] 张志达, 郑玲, 吴行等. 基于鲁棒自适应UKF的分布式电动汽车状态估计. 中国科学: 技术科学, 2020, 50(11): 1461-1473 (Zhang Zhida, Zheng Ling, Wu Hang, et al. State estimation of distributed electric vehicle based on robust adaptive UKF. Scientia Sinica Technologica, 2020, 50(11): 1461-1473 (in Chinese) doi: 10.1360/SST-2019-0326
    [8] Qin YC, He CC, Shao XX, et al. Vibration mitigation for in-wheel switched reluctance motor driven electric vehicle with dynamic vibration absorbing structures. Journal of Sound and Vibration, 2018, 419: 249-267 doi: 10.1016/j.jsv.2018.01.010
    [9] Shao XX, Naghdy F, Du HP, et al. Coupling effect between road excitation and an in-wheel switched reluctance motor on vehicle ride comfort and active suspension control. Journal of Sound and Vibration, 2019, 443: 683-702 doi: 10.1016/j.jsv.2018.12.012
    [10] Li Z, Zheng L, Ren Y, et al. Multi-objective optimization of active suspension system in electric vehicle with In-Wheel-Motor against the negative electromechanical coupling effects. Mechanical Systems and Signal Processing, 2019, 116: 545-565 doi: 10.1016/j.ymssp.2018.07.001
    [11] Younesian D, Hosseinkhani A, Askari H, et al. Elastic and viscoelastic foundations: A review on linear and nonlinear vibration modeling and applications. Nonlinear Dynamics, 2019, 97(1): 853-895 doi: 10.1007/s11071-019-04977-9
    [12] Froio D, Rizzi E, Simoes F, et al. Universal analytical solution of the steady-state response of an infinite beam on a Pasternak elastic foundation under moving load. International Journal of Solids and Structures, 2018, 132: 245-263
    [13] Esen I. Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. International Journal of Mechanical Sciences, 2019, 153-154: 21-35 doi: 10.1016/j.ijmecsci.2019.01.033
    [14] 李韶华, 路永婕, 任剑莹. 重型汽车-道路三维相互作用动力学研究. 北京: 科学出版社, 2020: 1-10

    (Li Shaohua, Lu Yongjie, Ren Jianying. Study on Dynamics of Three Dimensional Interaction Between Heavy Vehicle and Road. Beijing: Science Press, 2020: 1-10 (in Chinese))
    [15] Hien TD, Hung ND, Kien NT, et al. The variability of dynamic responses of beams resting on elastic foundation subjected to vehicle with random system parameters. Applied Mathematical Modelling, 2019, 67: 676-687 doi: 10.1016/j.apm.2018.11.018
    [16] Krishnanunni CG, Rao BN. Decoupled technique for dynamic response of vehicle-pavement systems. Engineering Structures, 2019, 191: 264-279 doi: 10.1016/j.engstruct.2019.04.042
    [17] Li SH, Yang SP. Investigation of the interaction between a vehicle and the road using the second road excitation on the vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223(7): 855-863 doi: 10.1243/09544070JAUTO1046
    [18] Yang SP, Li SH, Lu YJ. Investigation on dynamical interaction between a heavy vehicle and road pavement. Vehicle System Dynamics, 2010, 48(8): 923-944 doi: 10.1080/00423110903243166
    [19] 黄晓明, 郑彬双. 沥青路面抗滑性能研究现状与展望. 中国公路学报, 2019, 32(4): 32-49 (Huang Xiaoming, Zheng Binshuang. Research status and progress for skid resistance performance of asphalt pavements. China Journal of Highway and Transport, 2019, 32(4): 32-49 (in Chinese)
    [20] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019, 51(6): 1565-1586 (Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565-1586 (in Chinese) doi: 10.6052/0459-1879-19-212
    [21] 刘志浩, 高钦和, 于传强等. 重载轮胎面内欧拉梁模型及耦合振动特性研究. 振动工程学报, 2019, 32(1): 107-119 (Liu Zhihao, Gao Qin, Yu Chuanqiang, et al. Study on the model of euler beam and coupling vibration characteristics of heavy duty tire. Journal of Vibration Engineering, 2019, 32(1): 107-119 (in Chinese)
    [22] 王立安, 赵建昌, 王作伟. 汽车行驶诱发地表振动的解析研究. 力学学报, 2020, 52(5): 1509-1518 (Wang Li’an, Zhao Jianchang, Wang Zuowei. Analytical study on ground vibration induced by moving vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1509-1518 (in Chinese) doi: 10.6052/0459-1879-20-033
    [23] Zhang Y, Zhao HS, Lie ST. A nonlinear multi-spring tire model for dynamic analysis of vehicle-bridge interaction system considering separation and road roughness. Journal of Sound and Vibration, 2018, 4(36): 112-137
    [24] Deng L, Cao R, Wang W, et al. A multi-point tire model for studying bridge-vehicle coupled vibration. International Journal of Structural Stability and Dynamics, 2016, 16(8): 1550047 doi: 10.1142/S0219455415500479
    [25] Ding H, Li Y, Chen LQ. Nonlinear Vibration of a Beam with Asymmetric Elastic Supports. Nonlinear Dynamics, 2019, 95(2): 2543-2554
    [26] Singh SJ, Harsha SP. Nonlinear dynamic analysis of sandwich S-FGM plate resting on Pasternak foundation under thermal environment. European Journal of Mechanics A Solids, 2019, 76: 155-179 doi: 10.1016/j.euromechsol.2019.04.005
    [27] Yang SP, Chen LQ, Li SH. Dynamics of Vehicle-road Coupled System. Beijing: Springer jointly published with Science Press, 2015: 80-90.
    [28] 冯桂珍, 李韶华, 路永婕. 考虑弹性支撑边界条件的电动汽车-路面系统机电耦合振动特性分析. 中国公路学报, 2020, 33(8): 81-91 (Feng Guizhen, Li Shaohua, Lu Yongjie. Analysis of electromechanical coupling vibration characteristics of electric vehicle-road system considering elastically supported boundary conditions. China Journal of Highway and Transport, 2020, 33(8): 81-91 (in Chinese)
    [29] 钟银辉, 李以农, 杨超等. 基于主动悬架控制轮边驱动电动车垂向振动研究. 振动与冲击, 2017, 36(11): 242-247 (Zhong Yinhui, Li Yinong, Yang Chao, et al. Vertical vibration of in-wheel motor electric vehicles based on active suspension control. Journal of vibration of shock, 2017, 36(11): 242-247 (in Chinese)
    [30] 邓学钧, 黄晓明. 路面设计原理与方法. 北京: 人民交通出版社, 2001: 107-142

    (Deng Xuejun, Huang Xiaoming. Theory and Method of Road Design. Beijing: China Communications Press, 2001: 107-142 (in Chinese))
    [31] Senalp AD, Arikoglu A, Ozkol I. Dynamic response of a finite length Euler-Bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force. Journal of Mechanical Science and Technology, 2010, 24(10): 1957-1961 doi: 10.1007/s12206-010-0704-x
    [32] 张义民, 薛玉春, 贺向东. 基于开关磁阻电机驱动系统的电动汽车振动研究. 汽车工程, 2007, 29(1): 46-49 (Zhang Yimin, Xue Yuchun, He Xiangdong. A research on the vibration of an electric vehicle using switched reluctance motor as drive system. Automotive Engineering, 2007, 29(1): 46-49 (in Chinese) doi: 10.3321/j.issn:1000-680X.2007.01.010
    [33] Chen HY, Ding H, Li SH, et al. Convergent term of the galerkin truncation for dynamic response of sandwich beams on nonlinear foundations. Journal of Sound and Vibration, 2020, 483: 115514 doi: 10.1016/j.jsv.2020.115514
  • 加载中
图(23) / 表(2)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  109
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 录用日期:  2021-08-10
  • 网络出版日期:  2021-08-11
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回