EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种滞弹簧耗能的新型离散元滚动阻力模型研究

高政国 董朋昆 张雅俊 孙卉竹 迪亚

高政国, 董朋昆, 张雅俊, 孙卉竹, 迪亚. 一种滞弹簧耗能的新型离散元滚动阻力模型研究. 力学学报, 2021, 53(9): 2384-2394 doi: 10.6052/0459-1879-21-236
引用本文: 高政国, 董朋昆, 张雅俊, 孙卉竹, 迪亚. 一种滞弹簧耗能的新型离散元滚动阻力模型研究. 力学学报, 2021, 53(9): 2384-2394 doi: 10.6052/0459-1879-21-236
Gao Zhengguo, Dong Pengkun, Zhang Yajun, Sun Huizhu, Ndiaye Becaye Cissokho. A novel discrete element rolling resistance model based on hysteresis spring energy dissipation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2384-2394 doi: 10.6052/0459-1879-21-236
Citation: Gao Zhengguo, Dong Pengkun, Zhang Yajun, Sun Huizhu, Ndiaye Becaye Cissokho. A novel discrete element rolling resistance model based on hysteresis spring energy dissipation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2384-2394 doi: 10.6052/0459-1879-21-236

一种滞弹簧耗能的新型离散元滚动阻力模型研究

doi: 10.6052/0459-1879-21-236
基金项目: 国家自然科学基金资助项目(11872092, 11472029)
详细信息
    作者简介:

    高政国, 副教授, 主要研究方向:结构工程数值分析. E-mail: gaozg@buaa.edu.cn

  • 中图分类号: O347.7, TB125

A NOVEL DISCRETE ELEMENT ROLLING RESISTANCE MODEL BASED ON HYSTERESIS SPRING ENERGY DISSIPATION

  • 摘要: 颗粒间滚动阻力对颗粒体系的稳定性起着重要作用. 在传统的离散元法中, 滚动阻力模型通常由转动弹簧、转动黏壶和摩擦元件表达, 颗粒滚动动能由黏滞力(矩)和摩擦力做功耗散. 由于黏滞力(矩)与滚动速度相关, 临近静止状态的颗粒滚动速度变小, 动能耗散减弱, 传统的离散元模拟得到颗粒由滚动到静止耗费的时间比试验观测的结果要长. 为解决这一问题, 基于摩擦学理论分析了滚动阻力产生的材料滞弹性机理, 将其引入离散元滚动阻力模型, 提出了一种速度无关型动能耗散的滞弹簧, 给出了滞弹簧的弹性恢复力计算公式, 建立了一种新型的离散元滞弹性滚动阻力模型(HDEM). 为验证新型滚动阻力模型的正确性, 通过一个光学物理试验对单个圆形颗粒试件的自由滚动过程进行了测量, 将测量数据与新型的滞弹型离散元模型和传统离散元模型计算结果进行了对比. 结果显示, 基于滞弹性滚动阻力模型HDEM计算结果与试验数据吻合程度更高, 而且模拟得到的颗粒摆动频率更符合试验现象.

     

  • 图  1  弹性滞后示意图

    Figure  1.  Schematic diagram of elastic hysteresis

    图  2  常规DEM模型

    Figure  2.  DEM model

    图  3  滞弹簧

    Figure  3.  Hysteresis spring

    图  4  HDEM模型

    Figure  4.  HDEM model

    图  5  颗粒自由滚动示意图

    Figure  5.  Particle free-rolling on a flat surface

    图  6  试验装置图

    Figure  6.  Experimental device diagram

    图  7  圆柱滚动角位移时程曲线

    Figure  7.  Angular displacement variation versus time for a rolling cylinder

    图  8  颗粒转动模型示意图

    Figure  8.  Particle rotation model

    图  9  滚动过程

    Figure  9.  Rolling process

    图  10  HDEM与DEM模拟动能变化

    Figure  10.  Kinetic energy evolution with HDEM and DEM simulation

    图  11  橡胶圆柱与铝圆柱的β

    Figure  11.  β values for the rubber and aluminum cylinder

    图  12  DEM滚动模型与HDEM模型模拟结果

    Figure  12.  Rolling angle versus time for DEM and HDEM model

    图  13  体系动能与黏壶耗能

    Figure  13.  Kinetic energy and energy dissipated by the damper

    图  14  滞弹簧与黏壶耗能

    Figure  14.  Energy consumption ratio of hysteresis spring and damper

    图  15  橡胶圆柱数值模拟与试验对比结果

    Figure  15.  Comparison of the numerical simulation and experimental results for the rubber cylinder

    图  16  铝圆柱数值模拟与试验对比结果

    Figure  16.  Comparison of the numerical simulation and experimental results for the aluminum cylinder

  • [1] Zhang J, Zou GY, Zhang N, et al. Dynamic analysis of a vehicle with leaf spring based on the hysteresis model. International Journal of Vehicle Performance, 2018, 4(3): 282-304 doi: 10.1504/IJVP.2018.095309
    [2] Herrmann HJ, Luding S. Modeling granular media on the computer. Continuum Mechanics and Thermodynamics, 1998, 10(4): 189-231 doi: 10.1007/s001610050089
    [3] 王云霞, 梁志杰, 张东兴等. 基于离散元的玉米种子颗粒模型种间接触参数标定. 农业工程学报, 2016, 32(22): 36-42 (Wang Yunxia, Liang Zhijie, Zhang Dongxing, et al. Calibration method of contact characteristic parameters for corn seeds based on EDEM. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 36-42 (in Chinese) doi: 10.11975/j.issn.1002-6819.2016.22.005
    [4] Höhner D, Wirtz S, Scherer V. Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Power Technology, 2013, 235: 614-627 doi: 10.1016/j.powtec.2012.11.004
    [5] 孙其诚, 王光谦. 流体动力学//中国科学院编. 自然界和工程中的颗粒物质与颗粒流. 北京: 科学出版社, 2014: 54-71

    (Sun Qicheng, Wang Guangqian. Granular matter and granular flow in nature and engineering//Chinese Academy of Sciences ed. Fluid Dynamics. Beijing: Science Press, 2014: 54-71 (in Chinese))
    [6] Bardet JP, Huang Q. Numerical modeling of micro-polar effects in idealized granular materials. American Society of Mechanical Engineers, 1992, 37: 85-92
    [7] Morgan JK. Capturing physical phenomena in particle dynamics simulations of granular fault gouge//ACES Workshop Proceedings, 2003: 23-30
    [8] Sakaguchi H, Ozaki E, Igarashi T. Plugging of the flow of granular materials during the discharge from a silo. International Journal of Modern Physics B, 1993, 7: 1949-1963 doi: 10.1142/S0217979293002705
    [9] Jiang MJ, Yu HS, Harris D. A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics, 2005, 32(5): 340-357 doi: 10.1016/j.compgeo.2005.05.001
    [10] 魏新容, 段绍臻, 孙金龙等. 基于碰撞模型的斜坡滚石颗粒速度预测. 力学学报, 2020, 52(3): 707-715 (Wei Xinrong, Duan Shaozhen, Sun Jinlong, et al. Velocity prediction of slope rolling stone particle based on collision model. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 707-715 (in Chinese) doi: 10.6052/0459-1879-20-039
    [11] Zhang Y, Mollon G, Descartes S. Significance of third body rheology in friction at a dry sliding interface observed by a multibody meshfree model: Influence of cohesion between particles. Tribology International, 2020, 145: 106188 doi: 10.1016/j.triboint.2020.106188
    [12] Zhou Y, Shi Z, Zhang Q, et al. Damming process and characteristics of landslide-debris avalanches. Soil Dynamics and Earthquake Engineering, 2019, 121: 252-261 doi: 10.1016/j.soildyn.2019.03.014
    [13] Lopez RDF, Larsson S, Silfwerbrand J. A discrete element material model including particle degradation suitable for rockfill embankments. Computers and Geotechnics, 2019, 115: 103166 doi: 10.1016/j.compgeo.2019.103166
    [14] 李刚, 李恩兴. 某堆积体斜坡变形特征及稳定性分析. 地质灾害与环境保护, 2020, 31(3): 66-71+76 (LI Gang, LI Enxing. A study of deformation features and stability of a talus landslide. Journal of Geologica Hazards and Environment Preservation, 2020, 31(3): 66-71+76 (in Chinese) doi: 10.3969/j.issn.1006-4362.2020.03.010
    [15] 邹宇雄, 马刚, 李易奥等. 抗转动对颗粒材料组构特性的影响研究. 岩土力学, 2020, 41(8): 2829-2838 (Zou Yuxiong, MA Gang, LI Yiao, et al. Impact of rotation resistance on fabric of granular materials. Rock and Soil Mechanics, 2020, 41(8): 2829-2838 (in Chinese)
    [16] 祁原, 黄俊杰, 陈明祥. 可破碎颗粒体在动力载荷下的耗能特性. 力学学报, 2015, 47(2): 252-259 (Qi Yuan, Huang Junjie, Chen Mingxiang. Energy dissipation characteristics of crushable granules under dynamic excitations. Journal of Theoretical and Applied Mechanics, 2015, 47(2): 252-259 (in Chinese) doi: 10.6052/0459-1879-14-145
    [17] 魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型. 力学学报, 2019, 51(2): 473-483 (Wei Zhigang, Chen Haibo. A new elastic model for rubber-like materials. Chinese Jounal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483 (in Chinese) doi: 10.6052/0459-1879-18-303
    [18] 谈炳东, 许进升, 孙朝翔等. 短纤维增强三元乙丙橡胶横观各向同性黏—超弹性本构模型. 力学学报, 2017, 49(3): 677-684 (Tan Bingdong, Xu Jinsheng, Sun Chaoxiang, et al. A transversely isotropic visco-hyperelastic constitutive model for short fiber reinforced EPDM. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 677-684 (in Chinese) doi: 10.6052/0459-1879-16-380
    [19] Ai J, Chen JF, Rotter JM, et al. Assessment of rolling resistance models in discrete element simulations. Powder Technology, 2011, 206(3): 269-282 doi: 10.1016/j.powtec.2010.09.030
    [20] Reynolds O. On rolling-friction. Philosophical Transactions of the Royal Society of London, 1876, 166(1): 155-174
    [21] Tabor D. The mechanism of rolling friction. Philosophical Magazine Series 7, 1952, 43(345): 1055-1059 doi: 10.1080/14786441008520246
    [22] Flom DG, Bueche AM. Theory of rolling friction for spheres. Journal of Applied Physics, 1960, 3(3): 1725-1730
    [23] Greenwood JA, Minshall H, Tabor D. Hysteresis losses in rolling and sliding friction. Proceedings of the Royal Society of London, 1961, 259(1299): 480-507
    [24] Brilliantov NV, Poschel T. Rolling friction of a viscous sphere on a hard plane. Europhysics Letters, 1998, 42(5): 511-516 doi: 10.1209/epl/i1998-00281-7
    [25] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47-65
    [26] 刘嘉英, 周伟, 马刚等. 颗粒材料三维应力路径下的接触组构特性. 力学学报, 2019, 51(1): 26-35 (Liu Jiaying, Zhou Wei, Ma Gang, et al. Contact fabric characteristics of granular materials under three dimensionalstress paths. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35 (in Chinese) doi: 10.6052/0459-1879-18-338
    [27] 刘巨保, 王明, 王雪飞等. 颗粒群碰撞搜索及 CFD-DEM 耦合分域求解的推进算法研究. 力学学报, 2021: 1-16 (Liu Jubao, Wang Ming, Wang Xuefei, et al. Research on particle swarm collision search and advancement algorithm for CFD-DEM coupling domain solving. Chinese Journal of Theoretical and Applied Mechanics, 2021: 1-16 (in Chinese)
    [28] Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM. Journal of Engineering Mechanics, 1998, 124(3): 285-192 doi: 10.1061/(ASCE)0733-9399(1998)124:3(285)
    [29] Rorato R, Arroyo M, Gens A, et al. Image-based calibration of rolling resistance in discrete element models of sand. Computers and Geotechnics, 2021, 131: 103929 doi: 10.1016/j.compgeo.2020.103929
    [30] Zamir S, Mehari T, David W. A coupled sliding and rolling friction model for DEM calibration. Journal of Terramechanics, 2017, 72: 9-20 doi: 10.1016/j.jterra.2017.03.003
    [31] Zhu HP, Yu AB. A theoretical analysis of the force models in discrete element method. Powder Technology, 2005, 161(2): 122-129
    [32] Zhou YC, Wright BD, Yang RY, et al. Rolling friction in the dynamic simulation of sand-pile formation. Physica A Statistical Mechanics & Its Applications, 1999, 269(2-4): 536-553
    [33] Brilliantov NV, Poeschel T. Rolling friction of a viscous sphere on a hard plane. Europhys. Lett., 2007, 42(5): 511-516
    [34] 孙珊珊, 苏勇, 季顺迎. 颗粒滚动-滑动转换机制及摩擦系数的试验研究. 岩土力学, 2009, 30(S1): 110-115 (Sun Shanshan, Su Yong, Ji Shunying. Experimental study of rolling-sliding transiton and friction coefficients of particles. Rock and Soil Mechanics, 2009, 30(S1): 110-115 (in Chinese)
    [35] 高政国, 王佃瑞, 张雅俊. 一种颗粒滚动阻力模型参数的动力试验测定装置. 中国专利, 202010913790.8. 2020-09-03

    (Gao Zhengguo, Wang Dianrui, Zhang Yajun. A dynamic test method for parameter identification of particle rolling resistance model. Chinese Patend, 202010913790.8. 2020-09-03 (in Chinese))
    [36] 王佃瑞. 颗粒滚动阻力与堆积稳定特性研究. [硕士论文]. 北京: 北京航空航天大学, 2020

    (Wang Dianrui. Study on rolling resistance and stacking stability characteristics of particles. [Master Thesis]. Beijing: Beihang University, 2020 (in Chinese))
  • 加载中
图(16)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  100
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 录用日期:  2021-07-21
  • 修回日期:  2021-07-21
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回