EFFECT OF ASPECT RATIO ON THERMOCAPILLARY CONVECTION INSTABILITY OF GaAs MELT LIQUID BRIDGE
-
摘要: 采用基于谱元法线性稳定性分析方法, 研究了高径比对GaAs熔体(Pr = 0.068)液桥热毛细对流失稳的影响, 同时结合能量分析揭示了热毛细对流的失稳机制. 研究结果表明: 与典型低普朗特数(例如Pr = 0.011)熔体静态失稳模式和典型高普朗特数(例如Pr>1)熔体振荡失稳模式不同, GaAs熔体热毛细对流失稳模式依赖于液桥高径比(As). 随高径比的变化, GaAs熔体热毛细对流存在两种失稳模式. 高径比As 在0.4≤As≤1.18范围内, 热毛细对流失稳是从二维轴对称定常对流转变为三维周期性振荡对流(振荡失稳); 高径比在1.20≤As≤2.5范围内, 热毛细对流失稳是从二维轴对称定常流动转变为三维定常流动(静态失稳). 典型的高普朗特数熔体液桥热毛细对流失稳机制是热毛细机制; 典型的低普朗特数液桥热毛细对流失稳机制是水动力学惯性机制. 本文基于扰动能量分析的结果表明: GaAs熔体热毛细对流失稳同时包括水动力学惯性失稳机制和热毛细失稳机制的贡献, 其中水动力学惯性失稳机制占主导作用, 两种机制对热毛细对流失稳能量贡献的占比随高径比的变化而变化.Abstract: In this paper, we explore the effect of aspect ratio on the instability of thermocapillary convection in GaAs melt (Pr = 0.068) liquid bridge by using the linear stability analysis in the context of spectral element method. Besides, we provide physical insight on the underlying instability mechanism via energy analysis. Differing from the cases of typical low Prandtl number (such as Pr = 0.011) and typical high Prandtl number (such as Pr > 1), which correspond to stationary instability and oscillatory instability respectively, the instability of the thermocapillary convection of GaAs melt (Pr = 0.068) is of note due to its noticeable dependence on the aspect ratio (As). In particular, we observe two instability modes for the flow considered here with the variation of the aspect ratio. When the aspect ratio As ranges from 0.4 to 1.18, thermocapillary flow transits from two-dimensional axisymmetric steady convection to three-dimensional periodic oscillatory convection (oscillatory instability). While for 1.20 ≤ As ≤ 2.5, the stationary instability appears and the two-dimensional axisymmetric steady flow transits to three-dimensional steady flow. As for the instability mechanism of the thermocapillary convection, the liquid bridge of high Prandtl number is characterized by thermocapillary mechanism, while the case of low Prandtl number features the hydrodynamic inertia mechanism. Based on disturbance energy analysis, it is shown that the instability of the present thermocapillary convection arises from the combined action of the hydrodynamic inertial instability and thermocapillary instability, in which the hydrodynamic inertial instability mechanism is dominant, and the specific proportion of these two contributions varies with the aspect ratio.
-
图 5 高径比As = 0.48, Pr = 0.068的临界状态 (Mac = 1936.3) 下:(a) z = 0.51截面扰动温度 (云图) 和扰动速度矢量 (箭头), (b)自由液面扰动温度 (云图) 和扰动速度矢量 (箭头)
Figure 5. The disturbance temperature (colored contour) and disturbance velocity vector (arrow): (a) the z = 0.51 cross section, (b) the free surface under the critical condition (Mac = 1936.3) at As = 0.48, Pr = 0.068
图 7 高径比As = 0.77, Pr = 0.068的临界状态 (Mac = 1083.9) 下: (a) z = 0.51截面扰动温度 (云图) 和扰动速度矢量 (箭头), (b)自由液面扰动温度 (云图) 和扰动速度矢量 (箭头)
Figure 7. The disturbance temperature (colored contour) and disturbance velocity vector (arrow): (a) the z = 0.51 cross section, (b) the free surface under the critical condition (Mac = 1083.9) at As = 0.77, Pr = 0.068
表 1 基于不同网格分辨率得到的热毛细对流(Pr = 0.068)失稳临界Marangoni数(Mac)和波数kc
Table 1. The critical Marangoni number (Mac) and wave number kc for the instability of thermocapillary flow with Pr = 0.068 under different mesh resolution conditions
Mesh resolution 41 × 46 49 × 55 57 × 64 Mac / kc 1179.7/3 1182.4/3 1182.7/3 表 2 计算失稳临界参数(Rec, fc和kc)与文献[14]结果对比
Table 2. The critical values (Rec, fc, kc) from the present computations against Ref. [14]
Pr Rec/ fc/kc (present) Rec/ fc/kc [14] Relative error of Rec/fc 0.068 17379/205.3/3 17229/206/3 0.87% / 0.36% 0.183 14021/409.1/3 14276/415/3 1.78%/1.42% 1.0 2544/64.9/2 2551/65/2 0.27%/0.15% 表 4 Pr = 0.068时不同高径比下的失稳临界参数
Table 4. The critical values at different aspect ratios for Pr = 0.068
As Mac fc kc Type 0.40 2033.1 ±490.7 6 0.43 1920.0 ±493.6 5 0.48 1936.3 ±507.4 5 0.53 1770.8 ±504.7 4 0.59 1838.4 ±536.1 4 0.67 1988.8 ±233.0 4 type I (oscillatory instability) 0.71 1278.0 ±200.3 4 0.77 1083.9 ±201.7 4 0.91 995.3 ±155.2 3 1.00 1182.4 ±205.3 3 1.05 1246.8 ±63.6 2 1.11 1273.6 ±62.7 2 1.18 1393.6 ±36.7 2 1.20 1348.4 0.0 2 1.25 1058.6 0.0 2 type II (stationary instability) 1.33 691.3 0.0 2 1.43 531.9 0.0 2 1.54 483.6 0.0 2 1.67 350.5 0.0 1 1.82 262.8 0.0 1 2.00 234.6 0.0 1 2.22 248.4 0.0 1 2.50 326.0 0.0 1 表 5 Pr = 0.068时不同高径比能量分析结果
Table 5. The energy analysis results at different aspect ratios for Pr = 0.068
As IV1/% IV2/% IV3/% IV4/% IV5/% (IV4 + IV5)/% Mz/% Mφ/% (Mz + Mφ)/% 0.40 2.45 −7.90 −1.44 51.69 47.92 99.61 3.54 3.67 7.21 0.43 2.17 −12.31 −1.45 59.63 44.46 104.09 4.04 3.34 7.38 0.48 4.39 −6.12 −1.81 48.98 48.38 97.36 3.11 2.99 6.10 0.53 4.14 −11.26 −1.84 58.69 44.07 102.76 3.55 2.53 6.08 0.59 6.69 −3.11 −2.53 44.19 49.81 94.00 2.59 2.22 4.81 0.67 0.63 9.55 −1.11 18.19 63.87 82.06 2.57 6.17 8.74 0.71 −0.18 10.44 −2.67 20.40 62.95 83.35 2.49 6.49 8.98 0.77 0.85 12.58 −4.16 19.41 63.65 83.06 1.86 5.75 7.61 0.91 0.33 9.57 −4.29 22.39 59.06 81.45 3.36 6.50 9.86 1.00 7.10 16.23 −5.75 14.43 61.53 75.96 1.48 5.04 6.52 1.05 −1.95 −23.35 −1.05 71.59 26.65 98.24 18.95 8.40 27.35 1.11 2.49 −16.15 2.00 65.21 23.27 88.48 15.51 7.06 22.57 1.18 9.54 −6.57 6.34 55.90 19.22 75.12 10.95 4.36 15.31 1.20 10.29 −2.22 7.53 50.60 20.41 71.01 9.73 3.66 13.39 1.25 4.91 1.52 7.66 44.28 27.33 71.61 9.14 4.93 14.07 1.33 −2.44 1.75 8.78 43.12 29.86 72.98 10.72 8.18 18.90 1.43 −4.71 1.34 9.22 43.80 28.81 72.61 10.88 10.64 21.52 1.54 −4.84 2.51 9.18 43.27 27.71 70.98 10.04 12.14 22.18 1.67 5.33 −23.21 −13.15 117.74 8.12 125.86 16.78 −11.67 5.11 1.82 5.42 −19.76 −13.34 118.69 7.33 126.02 15.32 −13.65 1.67 2.00 4.22 −14.91 −12.64 108.46 11.71 120.17 16.04 −12.88 3.16 2.22 2.39 −9.98 −11.03 93.18 17.04 110.22 17.92 −9.51 8.41 2.50 −0.11 −5.68 −8.57 77.13 19.57 96.70 20.53 −2.87 17.66 -
[1] Schwabe D, Scharmann A. Marangoni convection in open boat and crucible. Journal of Crystal Growth, 1981, 52: 435-449 doi: 10.1016/0022-0248(81)90231-1 [2] Azami T, Nakamura S, Eguchi M, et al. The role of surface-tension-driven flow in the formation of a surface pattern on a Czochralski silicon melt. Journal of Crystal Growth, 2001, 233(1): 99-107 [3] Hu KX, Yan CY, Chen QS. Instability of thermocapillary–buoyancy convection in droplet migration. Physics of Fluids, 2019, 31(12): 122101 doi: 10.1063/1.5125846 [4] 章绍能, 胡开鑫. 黏弹性液滴热毛细迁移的对流不稳定. 力学学报, 2021, 53(5): 1313-1323 (Zhang Shaoneng, Hu Kaixin. Convective instability in thermocapillary migration of a viscoelastic droplet. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1313-1323 doi: 10.6052/0459-1879-20-443 [5] Louvis E, Fox P, Sutcliffe CJ. Selective laser melting of aluminium components. Journal of Materials Processing Tech, 2011, 211(2): 275-284 doi: 10.1016/j.jmatprotec.2010.09.019 [6] Dai D, Gu D. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments. Materials and Design, 2014, 55: 482-491 doi: 10.1016/j.matdes.2013.10.006 [7] Smith MK, Davis SH. Instabilities of dynamic thermocapillary liquid layers Part 1. Convective instabilities. Journal of Fluid Mechanics, 1983, 132(1): 145-162 [8] Levenstam M, Amberg G. Hydrodynamical instabilities of thermocapillary flow in a half-zone. Journal of Fluid Mechanics, 1995, 297(1): 357-372 [9] Levenstam M, Amberg G, Carlberg T, et al. Experimental and numerical studies of thermocapillary convection in a floating zone like configuration. Journal of Crystal Growth, 1996, 158(3): 224-230 doi: 10.1016/0022-0248(95)00466-1 [10] Chen QS, Hu WR, Prasad V. Effect of liquid bridge volume on the instability in small-Prandtl-number half zones. Journal of Crystal Growth, 1999, 203(1-2): 261-268 doi: 10.1016/S0022-0248(99)00064-0 [11] Ichiro U, Shiho T, Hiroshi K. Oscillatory and chaotic thermocapillary convection in a half-zone liquid bridge. Physics of Fluids, 2003, 15(2): 408-416 doi: 10.1063/1.1531993 [12] Wanschura M, Shevtsova VM, Kuhlmann HC, et al. Convective instability mechanisms in thermocapillary liquid bridges. Physics of Fluids, 1995, 7(5): 912-925 doi: 10.1063/1.868567 [13] Chen G, Lizée A, Roux B. Bifurcation analysis of the thermocapillary convection in cylindrical liquid bridges. Journal of Crystal Growth, 1997, 180: 638-647 [14] Levenstam M, Amberg G, Winkler C. Instabilities of thermocapillary convection in a half-zone at intermediate Prandtl numbers. Physics of Fluids, 2001, 13(4): 807-816 doi: 10.1063/1.1337063 [15] Li K, Xun B, Imaishi N, et al. Thermocapillary flows in liquid bridges of molten tin with small aspect ratios. International Journal of Heat & Fluid Flow, 2008, 29(4): 1190-1196 [16] Rybicki A, Floryan JM. Thermocapillary Effects in Liquid Bridges I. Thermocapillary Convection. Physics of Fluids, 1998, 30(7): 1956-1972 [17] Velten R, Schwabe D, Scharmann A. The periodic instability of thermocapillary convection in cylindrical liquid bridges. Physics of Fluids A Fluid Dynamics, 1991, 3(2): 267-279 doi: 10.1063/1.858135 [18] Chen QS, Hu WR. Influence of liquid bridge volume on instability of floating half zone convection. International Journal of Heat & Mass Transfer, 1998, 41(6-7): 825-837 [19] Nishino K, Yano T, Kawamura H. Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity. Journal of Crystal Growth, 2015, 420: 57-63 doi: 10.1016/j.jcrysgro.2015.01.039 [20] 吴勇强, 段俐, 李永强等. 大普朗特数大液桥浮力−热毛细对流地面实验. 力学学报, 2012, 44(6): 981-989 (Wu Yongqiang, Duan Li, Li Yongqiang, et al. Ground experiments of bouyant thermocapillary convection of large scale liquid bridge with large prandtl number. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 981-989 doi: 10.6052/0459-1879-12-148 [21] 王佳, 吴笛, 段俐等. 大尺寸液桥热毛细对流失稳性地面实验研究. 力学学报, 2015, 47(4): 580-586 (Wang Jia, Wu Di, Duan Li, et al. Ground experiments on the instability of thermocapillary convection in large scale liquid bridge. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 580-586 doi: 10.6052/0459-1879-14-309 [22] Kang Q, Wu D, Duan L, et al. The effects of geometry and heating rate on thermocapillary convection in the liquid bridge. Journal of Fluid Mechanics, 2019, 881: 951-982 doi: 10.1017/jfm.2019.757 [23] Wang J, Wu D, Duan L, et al. Ground experiment on the instability of buoyant-thermocapillary convection in large-scale liquid bridge with large Prandtl number. International Journal of Heat & Mass Transfer, 2017, 108: 2107-2119 [24] Liu H, Zeng Z, Yin L, et al. Influence of aspect ratio on the onset of thermocapillary flow instability in annular pool heated from inner wall. International Journal of Heat and Mass Transfer, 2019, 129: 746-752 doi: 10.1016/j.ijheatmasstransfer.2018.10.016 [25] Yin LM, Zhong Z, Qiu Z, et al. Linear stability analysis of thermocapillary flow in a slowly rotating shallow annular pool using spectral element method. International Journal of Heat & Mass Transfer, 2016, 97: 353-363 [26] Lehoucq RB, Sorensen DC. Deflation techniques for an implicitly restarted arnoldi iteration. Siam Journal on Matrix Analysis & Applications, 1996, 17(4): 789-821 [27] Lehoucq RB, Sorensen DC, Yang C. ARPACK users' guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. Siam, 1998 [28] Lehoucq RB. Implicitly restarted arnoldi methods and subspace iteration. SIAM Journal on Matrix Analysis and Applications, 23 (2): 551-562, 2001 [29] Boppana V, Gajjar J. Global flow instability in a lid-driven cavity. International Journal for Numerical Methods in Fluids, 2010, 62(8): 827-853 [30] Prange M, Wanschura M, Kuhlmann HC, et al. Linear stability of thermocapillary convection in cylindrical liquid bridges under axial magnetic fields. Journal of Fluid Mechanics, 1999, 394: 281-302 doi: 10.1017/S0022112099005698 [31] Liu H, Zeng Z, Yin L, et al. Effect of the Prandtl number on the instabilities of the thermocapillary flow in an annular pool. Physics of Fluids, 2019, 31(3): 034103 doi: 10.1063/1.5087113 [32] Zeng Z, Mizuseki H, Shimamura K. Marangoni convection in model of floating zone under mircogravity. Journal of Crystal Growth, 2001, 229: 601-604 doi: 10.1016/S0022-0248(01)01236-2 -