EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩有机质纳米孔隙气体吸附与流动规律研究

宋文辉 姚军 张凯

宋文辉, 姚军, 张凯. 页岩有机质纳米孔隙气体吸附与流动规律研究. 力学学报, 2021, 53(8): 2179-2192 doi: 10.6052/0459-1879-21-224
引用本文: 宋文辉, 姚军, 张凯. 页岩有机质纳米孔隙气体吸附与流动规律研究. 力学学报, 2021, 53(8): 2179-2192 doi: 10.6052/0459-1879-21-224
Song Wenhui, Yao Jun, Zhang Kai. Study on gas adsorption and transport behavior in shale organic nanopore. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2179-2192 doi: 10.6052/0459-1879-21-224
Citation: Song Wenhui, Yao Jun, Zhang Kai. Study on gas adsorption and transport behavior in shale organic nanopore. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2179-2192 doi: 10.6052/0459-1879-21-224

页岩有机质纳米孔隙气体吸附与流动规律研究

doi: 10.6052/0459-1879-21-224
基金项目: 国家自然科学基金重点项目基金 (52034010), 中央高校自主创新科研计划 (20CX06088A)和青岛市博士后资助基金 (qdyy20200083)资助项目
详细信息
    作者简介:

    姚军, 教授, 主要研究方向: 油气渗流理论与应用. E-mail: 20200083@upc.edu.cn

  • 中图分类号: O357.3

STUDY ON GAS ADSORPTION AND TRANSPORT BEHAVIOR IN SHALE ORGANIC NANOPORE

  • 摘要: 页岩储层孔隙结构复杂, 气体赋存方式多样. 有机质孔隙形状对受限空间气体吸附和流动规律的影响尚不明确, 导致难以准确认识页岩气藏气体渗流机理. 为解决该问题, 本文首先采用巨正则蒙特卡洛方法模拟气体在不同形状有机质孔隙(圆形孔隙、狭长孔隙、三角形孔隙、方形孔隙)内吸附过程, 发现不同形状孔隙内吸附规律符合朗格缪尔单层吸附规律, 分析了绝对吸附量、过剩吸附浓量、气体吸附参数随孔隙尺寸、压力的变化, 研究了孔隙形状对气体吸附的影响. 在明确不同形状有机质孔隙内气体热力学吸附规律基础上, 建立不同形状有机质孔隙内吸附气表面扩散数学模型和考虑滑脱效应的自由气流动数学模型, 结合分子吸附模拟结果研究了不同孔隙形状、孔隙尺寸有机质孔隙内吸附气流动与自由气流动对气体渗透率的贡献. 结果表明, 狭长孔隙内最大吸附浓度和朗格缪尔压力最高, 吸附气表面扩散能力最弱. 孔隙半径5 nm以上时, 吸附气表面扩散对气体渗透率影响可忽略. 本文研究揭示了页岩气藏实际生产过程中有机质孔隙形状对页岩气吸附和流动能力的影响机制.

     

  • 图  1  不同有机质孔隙形状高分辨率页岩扫描电镜图像

    Figure  1.  High resolution shale SEM images (the different pore morphologies are marked on the SEM image)

    图  2  不同有机质孔隙模型横向剖面形状(孔隙半径2 nm)

    Figure  2.  Visualization of constructed 3D carbon pores lateral cross sections (r = 2 nm)

    图  3  有机质孔隙模型纵向剖面(圆形孔隙为例, 孔隙半径2 nm)

    Figure  3.  Visualization of constructed carbon pore longitudinal cross section, circle pore as an example, r = 2 nm

    图  4  LJ势能曲线示意图

    Figure  4.  Illustration of LJ potential curve

    图  5  不同形状有机质孔隙内气体分子分布(气体分子: 红色, 孔隙半径2 nm)

    Figure  5.  Gas molecule distribution in different shapes of organic pore (gas molecule: red color, r = 2 nm)

    图  6  实验室等温吸附曲线测试原理示意图

    Figure  6.  Illustration of laboratory measured isothermal gas adsorption curve

    7  温度400 K下不同压力、孔隙半径(1 nm ~ 8 nm)下不同形状孔隙中绝对吸附量变化

    7.  Absolute adsorption isotherms at 400 K in different structures of carbon pores with pore radii ranging from 1 nm to 8 nm

    图  7  温度400 K下不同压力、孔隙半径(1 nm ~ 8 nm)下不同形状孔隙中绝对吸附量变化 (续)

    Figure  7.  Absolute adsorption isotherms at 400 K in different structures of carbon pores with pore radii ranging from 1 nm to 8 nm (continued)

    图  8  朗格缪尔吸附参数随孔隙半径的变化

    Figure  8.  Langmuir adsorption parameters variation with pore radius

    图  9  典型气藏生产条件下不同孔隙形状气体绝对吸附量随孔隙尺寸变化

    Figure  9.  Absolute adsorption concentration change with pore size in different pore structures at typical reservoir conditions

    图  10  孔隙半径1.5 nm、温度400 K、压力40 MPa下气体赋存状态. (a)(d)(g)(j)吸附气和自由气赋存状态, (b)(e)(h)(k)自由气赋存状态, (c)(f)(i)(l)吸附气赋存状态. 三角形孔隙以中心三角形孔隙分析

    Figure  10.  Methane molecule distribution in different pore structures with pore radius 1.5 nm at 400 K, 40 MPa. (a)(d)(g)(j) Adsorbed gas and bulk gas total distribution, (b)(e)(h)(k) bulk gas distribution, (c)(f)(i)(l) adsorbed gas distribution. Triangle pore is studied using central triangle

    图  11  温度400 K基于吸附层和基于孔隙整体空间最大吸附浓度随孔隙半径的变化

    Figure  11.  Variation of maximum adsorption gas concentration based on total pore space and adsorption layer with pore radius at 400 K

    图  12  温度400 K、孔隙半径1 nm~ 8 nm下不同压力、不同形状孔隙中过剩吸附浓度变化

    Figure  12.  Excess adsorption isotherms at 400 K in different structures of carbon pores with pore radii ranging from 1 nm to 8 nm

    图  13  温度400 K下不同孔隙形状、孔隙半径下过剩吸附线

    Figure  13.  Excess adsorption isotherms at 400 K in different structures of carbon pores with different pore radii

    图  14  页岩气在有机质孔隙中的流动机制

    Figure  14.  Gas transport mechanisms in organic pore

    图  15  有机质孔隙表面吸附层等效方法

    Figure  15.  Equivalent adsorbed layer on organic pore surface

    图  16  狭长孔隙气体流动物理模型

    Figure  16.  Physical model of gas flow in slit pore

    图  17  不同孔隙尺寸下吸附气和自由气赋存状态变化及其对气体渗透率影响(圆形孔隙为例, 40 MPa, 400 K)

    Figure  17.  Adsorbed gas and bulk gas distributions at different pore radii and its influence on gas permeability (circle pore as an example, 40 MPa, 400 K)

    图  18  温度400 K, 不同孔隙半径、孔隙压力下吸附气表面扩散对气体渗透率贡献

    Figure  18.  Contribution of surface diffusion on total gas permeability at different pore radii, pore pressure and 400 K

    表  1  力场参数

    Table  1.   Force field potential parameters

    Potential parameterεff/kB/Kσff/nm
    CH41480.373
    C280.34
    下载: 导出CSV
  • [1] Wu J, Yuan Y, Niu S, et al. Multiscale characterization of pore structure and connectivity of Wufeng-Longmaxi shale in Sichuan Basin, China. Marine and Petroleum Geology, 2020, 120: 104514 doi: 10.1016/j.marpetgeo.2020.104514
    [2] Xu R, Prodanović M. Effect of pore geometry on nitrogen sorption isotherms interpretation: A pore network modeling study. Fuel, 2018, 225: 243-255 doi: 10.1016/j.fuel.2018.03.143
    [3] 黄克智, 柳占立, 孟庆国. 页岩气高效开采的力学问题与挑战. 力学学报, 2017, 49(3): 507-516 (Huang Kezhi, Liu Zhanli, Meng Qingguo, et al. Problems and challenges of mechanics in shale gas efficient exploitation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese) doi: 10.6052/0459-1879-16-399
    [4] Xu R, Prodanović M, Landry C. Study of subcritical and supercritical gas adsorption behavior in different nanopore systems in shale using lattice Boltzmann method. International Journal of Coal Geology, 2019, 212: 103263 doi: 10.1016/j.coal.2019.103263
    [5] Sheng G, Su Y, Zhao H, et al. A unified apparent porosity/permeability model of organic porous media: Coupling complex pore structure and multi-migration mechanism. Advances in Geo-Energy Research, 2020, 4(2): 115-125 doi: 10.26804/ager.2020.02.01
    [6] Sing S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603-619 doi: 10.1351/pac198557040603
    [7] Loucks G, Reed M, Ruppel C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of sedimentary research, 2009, 79(12): 848-861 doi: 10.2110/jsr.2009.092
    [8] Song W, Yao J, Li Y, et al. New pore size distribution calculation model based on chord length and digital image. Journal of Natural Gas Science and Engineering, 2017, 48: 111-118 doi: 10.1016/j.jngse.2016.12.041
    [9] Li K, Kong S, Xia P, et al. Microstructural characterisation of organic matter pores in coal-measure shale. Advances in Geo-Energy Research, 2020, 4(4): 372-391 doi: 10.46690/ager.2020.04.04
    [10] Li J, Yu T, Liang X, et al. Insights on the gas permeability change in porous shale. Advances in Geo-Energy Research, 2017, 1(2): 69-73
    [11] Song W, Yao J, Ma J, et al. Pore-scale numerical investigation into the impacts of the spatial and pore-size distributions of organic matter on shale gas flow and their implications on multiscale characterisation. Fuel, 2018, 216: 707-721 doi: 10.1016/j.fuel.2017.11.114
    [12] Wu K, Chen Z, Li X, et al. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect–adsorption-mechanic coupling. International Journal of Heat and Mass Transfer, 2016, 93: 408-426 doi: 10.1016/j.ijheatmasstransfer.2015.10.003
    [13] Li J, Chen Z, Wu K, et al. A multi-site model to determine supercritical methane adsorption in energetically heterogeneous shales. Chemical Engineering Journal, 2018, 349: 438-455 doi: 10.1016/j.cej.2018.05.105
    [14] Wang J, Dong M, Yang Z, et al. Investigation of methane desorption and its effect on the gas production process from shale: experimental and mathematical study. Energy & Fuels, 2017, 31(1): 205-216
    [15] Zhou S, Ning Y, Wang H, et al. Investigation of methane adsorption mechanism on Longmaxi shale by combining the micropore filling and monolayer coverage theories. Advances in Geo-Energy Research, 2018, 2(3): 269-281 doi: 10.26804/ager.2018.03.05
    [16] Rine J, Dorsey W, Floyd M, et al. A comparative sem study of pore types and porosity distribution in high to low porosity samples from selected gas-shale formations. Gulf Coast Association of Geological Societies Transactions, 2010, 60: 825
    [17] Yang B, You L, Kang Y, et al. Pore Shape Factors in Shale: Calculation and Impact Evaluation on Fluid Imbibition//Proceedings of the SPE Europec Featured at 80th EAGE Conference and Exhibition. Society of Petroleum Engineers, 2018
    [18] Afsharpoor A, Javadpour F. Liquid slip flow in a network of shale noncircular nanopores. Fuel, 2016, 180: 580-590 doi: 10.1016/j.fuel.2016.04.078
    [19] Ren W, Guo J, Zeng F, et al. Modeling of high-pressure methane adsorption on wet shales. Energy & Fuels, 2019, 33: 7043-7051
    [20] Tang X, Ripepi N, Stadie P, et al. Thermodynamic analysis of high pressure methane adsorption in Longmaxi shale. Fuel, 2017, 193: 411-418 doi: 10.1016/j.fuel.2016.12.047
    [21] Tang X, Ripepi N, Stadie P, et al. A dual-site Langmuir equation for accurate estimation of high pressure deep shale gas resources. Fuel, 2016, 185: 10-17 doi: 10.1016/j.fuel.2016.07.088
    [22] Wang J, Li Y, Yang Z, et al. Measurement of dynamic adsorption–diffusion process of methane in shale. Fuel, 2016, 172: 37-48 doi: 10.1016/j.fuel.2015.12.069
    [23] Pang Y, Soliman Y, Deng H, et al. Experimental and analytical investigation of adsorption effects on shale gas transport in organic nanopores. Fuel, 2017, 199: 272-288 doi: 10.1016/j.fuel.2017.02.072
    [24] Jin Z, Firoozabadi A. Phase behavior and flow in shale nanopores from molecular simulations//Proceedings of the SPE Annual Technical Conference and Exhibition, OnePetro, 2015
    [25] Pang W, Jin Z. Revisiting methane absolute adsorption in organic nanopores from molecular simulation and Ono-Kondo lattice model. Fuel, 2019, 235: 339-349 doi: 10.1016/j.fuel.2018.07.098
    [26] Guo F, Wang S, Feng Q, et al. Adsorption and absorption of supercritical methane within shale kerogen slit. Journal of Molecular Liquids, 2020, 320: 114364 doi: 10.1016/j.molliq.2020.114364
    [27] Cracknell F, Gordon P, Gubbins E. Influence of pore geometry on the design of microporous materials for methane storage. The Journal of Physical Chemistry, 1993, 97(2): 494-499 doi: 10.1021/j100104a036
    [28] He S, Jiang Y, Conrad C, et al. Molecular simulation of natural gas transport and storage in shale rocks with heterogeneous nano-pore structures. Journal of Petroleum Science and Engineering, 2015, 133: 401-409 doi: 10.1016/j.petrol.2015.06.029
    [29] Wu K, Li X, Wang C, et al. Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs. Industrial & Engineering Chemistry Research, 2015, 54(12): 3225-3236
    [30] Riewchotisakul S, Akkutlu Y. Adsorption-enhanced transport of hydrocarbons in organic nanopores. SPE Journal, 2016, 21(6): 1960-1969 doi: 10.2118/175107-PA
    [31] Yin Y, Qu ZG, Zhang JF. An analytical model for shale gas transport in kerogen nanopores coupled with real gas effect and surface diffusion. Fuel, 2017, 210: 569-577 doi: 10.1016/j.fuel.2017.09.018
    [32] Qu ZG, Yin Y, Wang H, et al. Pore-scale investigation on coupled diffusion mechanisms of free and adsorbed gases in nanoporous organic matter. Fuel, 2020, 260: 116423 doi: 10.1016/j.fuel.2019.116423
    [33] Gupta A, Chempath S, Sanborn MJ, et al. Object-oriented programming paradigms for molecular modeling. Molecular Simulation, 2003, 29(1): 29-46 doi: 10.1080/0892702031000065719
    [34] Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford University Press, 2017
    [35] Frenkel D, Smit B. Understanding Molecular Simulation: from Algorithms to Applications. Elsevier, 2001
    [36] Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. The Journal of Physical Chemistry B, 1998, 102(14): 2569-2577 doi: 10.1021/jp972543+
    [37] Freitag M. Graphene: trilayers unravelled. Nature Physics, 2011, 7(8): 596 doi: 10.1038/nphys2032
    [38] Steele WA. The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms. Surface Science, 1973, 36(1): 317-352 doi: 10.1016/0039-6028(73)90264-1
    [39] Bojan MJ, Steele W. Computer simulation studies of the adsorption of Kr in a pore of triangular cross-section. Studies in Surface Science and Catalysis, 1993: 51-58
    [40] Gubbins KE, Quirke N. Molecular Simulation and Industrial Applications: Methods, Examples, and Prospects. Taylor & Francis Press, 1996
    [41] Steele WA. The Interaction of Gases with Solid Surfaces. Pergamon Press, 1974
    [42] Reid RC, Prausnitz JM, Poling BE. The Properties of Gases and Liquids. OSTI 6504847, 1987. https://www.osti.gov/biblio/6504847
    [43] Brandani S, Mangano E, Sarkisov L. Net, excess and absolute adsorption and adsorption of helium. Adsorption, 2016, 22(2): 261-276 doi: 10.1007/s10450-016-9766-0
    [44] Karniadakis GE, Beskok A, Aluru N. Microflows and Nanoflows: Fundamentals and Simulation. Springer Science & Business Media, 2006
    [45] Song W, Yao J, Li Y, et al. Apparent gas permeability in an organic-rich shale reservoir. Fuel, 2016, 181: 973-984 doi: 10.1016/j.fuel.2016.05.011
    [46] Lee AL, Gonzalez MH, Eakin BE. The viscosity of natural gases. Journal of Petroleum Technology, 1966, 18(8): 997-1000 doi: 10.2118/1340-PA
    [47] Song W, Yao J, Wang D, et al. Dynamic pore network modelling of real gas transport in shale nanopore structure. Journal of Petroleum Science and Engineering, 2020, 184: 106506 doi: 10.1016/j.petrol.2019.106506
    [48] Kim C, Jang H, Lee Y, et al. Diffusion characteristics of nanoscale gas flow in shale matrix from Haenam basin, Korea. Environmental Earth Sciences, 2016, 75(4): 1-8
    [49] Beskok A, Karniadakis GE. Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophysical Engineering, 1999, 3(1): 43-77 doi: 10.1080/108939599199864
    [50] Maurer J, Tabeling P, Joseph P, et al. Second-order slip laws in microchannels for helium and nitrogen. Physics of Fluids, 2003, 15(9): 2613-2621 doi: 10.1063/1.1599355
    [51] Patzek T, Silin D. Shape factor and hydraulic conductance in noncircular capillaries: I. One-phase creeping flow. Journal of Colloid and Interface Science, 2001, 236(2): 295-304 doi: 10.1006/jcis.2000.7413
    [52] Song W, Yin Y, Landry CJ, et al. A local-effective-viscosity multirelaxation-time lattice Boltzmann pore-network coupling model for gas transport in complex nanoporous media. SPE Journal, 2021, 26(1): 461-481 doi: 10.2118/203841-PA
    [53] Cunningham RE, Williams R. Diffusion in Gases and Porous Media. Springer, 1980
    [54] Shelby J. Temperature dependence of He diffusion in vitreous SiC2. Journal of the American Ceramic Society, 1971, 54(2): 125-126 doi: 10.1111/j.1151-2916.1971.tb12235.x
    [55] Wang Y, Ercan C, Khawajah A, et al. Experimental and theoretical study of methane adsorption on granular activated carbons. AIChE Journal, 2012, 58(3): 782-788 doi: 10.1002/aic.12611
    [56] Pan H, Ritter JA, Balbuena PB. Isosteric heats of adsorption on carbon predicted by density functional theory. Industrial & Engineering Chemistry Research, 1998, 37(3): 1159-1166
    [57] Guo L, Peng X, Wu Z. Dynamical characteristics of methane adsorption on monolith nanometer activated carbon. Journal of Chemical Industry and Engineering (China) , 2008, 59(11): 2726-2732
    [58] Nodzeński A. Sorption and desorption of gases (CH4, CO2) on hard coal and active carbon at elevated pressures. Fuel, 1998, 77(11): 1243-1246 doi: 10.1016/S0016-2361(98)00022-2
    [59] Hwang ST, Kammermeyer K. Surface diffusion in microporous media. The Canadian Journal of Chemical Engineering, 1966, 44(2): 82-89 doi: 10.1002/cjce.5450440206
    [60] Chen Y, Yang R. Concentration dependence of surface diffusion and zeolitic diffusion. AIChE Journal, 1991, 37(10): 1579-1582 doi: 10.1002/aic.690371015
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  66
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 录用日期:  2021-07-05
  • 网络出版日期:  2021-07-07
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回