EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾斜吹吸控制下湍流边界层减阻的直接数值模拟

夏前锦 连龙 瞿建雄 王永生 薛原 王强 赵立豪

夏前锦, 连龙, 瞿建雄, 王永生, 薛原, 王强, 赵立豪. 倾斜吹吸控制下湍流边界层减阻的直接数值模拟. 力学学报, 2021, 53(9): 2454-2467 doi: 10.6052/0459-1879-21-223
引用本文: 夏前锦, 连龙, 瞿建雄, 王永生, 薛原, 王强, 赵立豪. 倾斜吹吸控制下湍流边界层减阻的直接数值模拟. 力学学报, 2021, 53(9): 2454-2467 doi: 10.6052/0459-1879-21-223
Xia Qianjin, Lian Long, Qu Jianxiong, Wang Yongsheng, Xue Yuan, Wang Qiang, Zhao Lihao. Direct numerical simulation of drag reduction in turbulent boundary layers controlled by inclined blowing and sucking. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2454-2467 doi: 10.6052/0459-1879-21-223
Citation: Xia Qianjin, Lian Long, Qu Jianxiong, Wang Yongsheng, Xue Yuan, Wang Qiang, Zhao Lihao. Direct numerical simulation of drag reduction in turbulent boundary layers controlled by inclined blowing and sucking. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2454-2467 doi: 10.6052/0459-1879-21-223

倾斜吹吸控制下湍流边界层减阻的直接数值模拟

doi: 10.6052/0459-1879-21-223
基金项目: 国家自然科学基金 (11602123), 内蒙古自治区自然科学基金 (2020MS01012, 2019MS07006)和内蒙古自治区高等学校科学研究项目(NJZY21158)资助
详细信息
    作者简介:

    夏前锦, 副教授, 主要研究方向: 流体力学. E-mail: xqj10@tsinghua.org.cn

    连龙, 工程师, 主要研究方向: 机械微流控. E-mail: lianlong@oit.edu.cn

  • 中图分类号: O355

DIRECT NUMERICAL SIMULATION OF DRAG REDUCTION IN TURBULENT BOUNDARY LAYERS CONTROLLED BY INCLINED BLOWING AND SUCKING

  • 摘要: 雷诺切应力是壁湍流高摩擦阻力的重要来源, 有理论认为可以通过壁面生成负雷诺应力(数值上为正)的方式来削弱湍流流场中雷诺应力的分布, 以此获得流动减阻. 而通过对雷诺平均运动方程的法向二次积分, 可以发现壁面生成正雷诺应力(数值上为负)对壁面摩擦阻力系数才有负贡献. 文中在湍流边界层流动的控制区域下边界设置一系列倾斜狭缝, 利用该装置通过周期性吹吸的方法产生壁面生成正(负)雷诺应力, 并采用直接数值模拟方法考察和验证上文提到的减阻理论. 文中采用的湍流边界层流动模型, 其流动雷诺数(基于外流速度及动量损失厚度)从300 发展到860. 文中通过多组数值模拟算例, 考察了射流强度和频率对壁面摩擦阻力系数的影响, 并对比了壁面生成正或负雷诺应力对流动的影响. 研究表明, 壁面生成正雷诺应力控制的减阻率能达到3.26, 而壁面生成负雷诺应力控制的减阻效果较壁面生成正雷诺应力控制的要差; 壁面生成的正雷诺应力对壁面摩擦阻力有负贡献, 而壁面生成的负雷诺应力对壁面摩擦阻力有正贡献; 通过考察控制的收支比, 发现控制方案不能获得能量净收益.

     

  • 图  1  主模拟计算域示意图

    Figure  1.  Sketch of the main simulation

    图  2  控制区域示意图

    Figure  2.  Schematics of the lower boundary for control cases

    图  3  控制区过渡函数的分布

    Figure  3.  Distribution of transition function in control region

    图  4  摩擦阻力系数($C_{\rm{f}}$)在壁面生成正雷诺应力控制下沿流向的分布

    Figure  4.  Evolution of the skin friction coefficient in wall-generated positive RSS cases, $C_{\rm{f}}$

    图  5  壁面生成正雷诺应力的各算例在不同流向位置的平均雷诺应力分布对比

    Figure  5.  Profiles of the RSS at different streamwise locations

    图  6  壁面生成正雷诺应力的各算例在流向不同位置的平均速度剖面的对比

    Figure  6.  Mean velocity profiles at different streamwise direction locations

    图  7  壁面生成正雷诺应力的各算例在不同流向位置脉动量均方根

    Figure  7.  Profiles of the root mean square of $u^\prime$ and $v^\prime$ at different streamwise locations

    图  8  $ y^+ $ = 15平面的流向速度脉动云图

    Figure  8.  Instantaneous of the streamwise velocity fluctuation $ u^\prime $ at $ y^+ $ = 15

    图  9  $C_{\rm{f}}$在壁面生成负雷诺应力控制下的沿程发展

    Figure  9.  Evolution of the $C_{\rm{f}}$ in wall-generated negative RSS cases

    图  10  壁面生成负雷诺应力控制各算例在流向不同位置的平均速度(U)剖面对比

    Figure  10.  Profiles of mean streamwise velocity (U) in wall-generated negative RSS cases at different streamwise locations

    图  11  壁面生成负雷诺应力的各算例在不同流向位置处的平均雷诺应力分布对比

    Figure  11.  Profiles of the mean RSS at different streamwise locations

    图  12  $C_{\rm{f}}$$C_{\rm{w}}$沿流向发展情况

    Figure  12.  Evolution of $C_{\rm{f}}$ and $C_{\rm{w}}$ in streamwise direction

    图  13  $C_{\rm{f}}$各贡献项在流向的发展情况

    Figure  13.  Streamwise evolution of the different terms on the right hand side of Eq. (3) for the no-control case and the control cases with same amplitude ($ A_3$) and frequency ($\omega_3$)

    图  14  各算例边界层厚度沿流向的发展

    Figure  14.  Evolution of the boundary layer thickness (99% velocity thickness)

    图  15  各算例的平均雷诺应力分布对比

    Figure  15.  Profiles of the RSS at different streamwise locations

    图  16  各算例控制算例沿程减阻率的变化

    Figure  16.  Evolution of the drag reduction rate in streamwise direction

    图  17  各控制算例获得能量收支比的沿程发展情况

    Figure  17.  Evolution of the cost-effectiveness ratio (gain) in streamwise direction

    表  1  算例参数表

    Table  1.   Setup of the input parameters

    Case A & $\omega$ A $\omega$ $\alpha$ $\mid \left\langle { {u_{\rm{w}}} {v_{\rm{w}}} } \right\rangle \mid$$(\times 10^3)$
    C13N (P) A1ω3 0.009 0.235 π/4 (3π/4) 0.02
    C23N (P) A2ω3 0.025 0.235 π/4 (3π/4) 0.15
    C31N (P) A3ω1 0.044 0.057 π/4 (3π/4) 0.48
    C32N (P) A3ω2 0.044 0.094 π/4 (3π/4) 0.48
    C33N (P) A3ω3 0.044 0.235 π/4 (3π/4) 0.48
    C43N (P) A4ω3 0.058 0.235 π/4 (3π/4) 0.84
    C53N (P) A5ω3 0.065 0.235 π/4 (3π/4) 1.06
    uc A3ω3 0.044 0.235 ${\text{π}}$/2 0.00
    vc A3ω3 0.044 0.235 0 0.00
    NC 0 0 0.00
    下载: 导出CSV
  • [1] Kim J. Control of turbulent boundary layers. Physics of Fluids, 2003, 15(5): 1093-1105 doi: 10.1063/1.1564095
    [2] Kim J. Physics and control of wall turbulence for drag reduction. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2011, 369(1940): 1396-1411
    [3] Choi H, Moin P, Kim J. Active turbulence control for drag reduction in wall-bounded flows. Journal of Fluid Mechanics, 1994, 262: 75-110 doi: 10.1017/S0022112094000431
    [4] Chung YM, Talha T. Effectiveness of active flow control for turbulent skin friction drag reduction. Physics of Fluids, 2011, 23(2): 025102
    [5] 魏进家, 刘飞, 刘冬洁. 减阻用表面活性剂溶液分子动力学模拟研究进展. 力学学报, 2019, 51(4): 971-990 (Wei Jinjia, Liu Fei, Liu Dongjie. Progress in molecular dynamics simulations of surfactant solution for turbulent drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 971-990 (in Chinese) doi: 10.6052/0459-1879-18-372
    [6] White CM, Mungal MG. Mechanics and prediction of turbulent drag reduction with polymer additives. Annual Review of Fluid Mechanics, 2008, 40: 235-256 doi: 10.1146/annurev.fluid.40.111406.102156
    [7] Wang J, Koley SS, Katz J. On the interaction of a compliant wall with a turbulent boundary layer. Journal of Fluid Mechanics, 2020, 899: A20 doi: 10.1017/jfm.2020.446
    [8] Kulik BM, Boiko AV, Lee I. Using two-layer compliant coatings to control turbulent boundary layer. Thermophysics and Aeromechanics, 2019, 26(1): 47-57 doi: 10.1134/S0869864319010056
    [9] Benschop HOG, Greidanus AJ, Delfos R, et al. Deformation of a linear viscoelastic compliant coating in a turbulent flow. Journal of Fluid Mechanics, 2019, 859: 613-658 doi: 10.1017/jfm.2018.813
    [10] Kulik VM. Concerning the features of deformation of a compliant coating by pressure pulsations in a turbulent boundary layer. Thermophysics and Aeromechanics, 2020, 27(1): 71-80 doi: 10.1134/S0869864320010060
    [11] Garcia-Mayoral R, Jimenez J. Drag reduction by riblets. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2011, 369(1940): 1412-1427
    [12] 李思成, 吴迪, 崔光耀等. 低雷诺数沟槽表面湍流/非湍流界面特性的实验研究. 力学学报, 2020, 52(6): 1632-1644 (Li Sicheng, Wu Di, Cui Guangyao, Wang Jinjun. Experimental study on properties of turbulent/non-turbulent interface over riblets surfaces at low reynolds numbers. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1632-1644 (in Chinese) doi: 10.6052/0459-1879-20-211
    [13] Lee C, Kim J, Choi H. Suboptimal control of turbulent channel flow for drag reduction. Journal of Fluid Mechanics, 1998, 358: 245-258 doi: 10.1017/S002211209700815X
    [14] Lee C, Kim J, Babcock D, et al. Application of neural networks to turbulence control for drag reduction. Physics of Fluids, 1997, 9: 1740-1747 doi: 10.1063/1.869290
    [15] Fukagata K, Kasagi N. Suboptimal control for drag reduction via suppression of near-wall Reynolds shear stress. International Journal of Heat and Fluid Flow, 2004, 25: 341-350 doi: 10.1016/j.ijheatfluidflow.2004.02.015
    [16] Pamiès M, Garnier E, Merlen A, et al. Response of a spatially developing turbulent budary layer to active control strategies in the frame work of opposition control. Physics of Fluids, 2007, 19: 108102 doi: 10.1063/1.2771659
    [17] Yukinori K, Fukagata K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. Journal of Fluid Mechanics, 2011, 681: 154-172 doi: 10.1017/jfm.2011.219
    [18] Min T, Kang SM, Speyer JL, et al. Sustained sub-laminar drag in a fully developed channel flow. Journal of Fluid Mechanics, 2006, 558: 309-318 doi: 10.1017/S0022112006000206
    [19] Fukagata K, Iwamoto K, Kasagi N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Physics of Fluids, 2002, 14(11): L73-L76 doi: 10.1063/1.1516779
    [20] Xia QJ, Huang WX, Xu CX, et al. Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dynamics Research, 2015, 47(2): 025503 doi: 10.1088/0169-5983/47/2/025503
    [21] 许春晓. 壁湍流相干结构和减阻控制机理. 力学进展, 2015, 45(1): 111-140 (Xu Chunxiao. Coherent structures and dragreduction mechanism mechanism in wall turbulence. Advances in Mechanics, 2015, 45(1): 111-140 (in Chinese)
    [22] Williams JE. Reynolds stress near a flexible surface responding to unsteady air flow. Bolt Beranek and Newman INC Reprort, Cambridge Mass. 1964
    [23] Groskreutz R. An attempt to control boundary-layer turbulence with nonisotropic compliant walls. University Science Journal (Dar es Salaam) , 1975, 1: 65-73
    [24] Carpenter PW, Morris PJ. The effect of anisotropic wall compliance on boundary-layer stability and transition. Journal of Fluid Mechanics, 1990, 218(1): 171-223 doi: 10.1017/S0022112090000970
    [25] Fukagata K, Kern S, Chatelain P, et al. Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. Journal of Turbulence, 2008, 9: N35 doi: 10.1080/14685240802441126
    [26] Xia QJ, Huang WX, Xu CX. Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall. Acta Mechanica Sinica, 2019, 35(2): 384-400 doi: 10.1007/s10409-018-0820-x
    [27] Kim K, Baek SJ, Sung HJ. An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 2002, 381: 125-381
    [28] Lund TS. Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of Computational Physics, 1998, 140: 223-258
    [29] Xia QJ, Huang WX, Xu CX. Direct numerical simulation of turbulent boundary layer over a compliant wall. Journal of Fluids and Structures, 2017, 71: 126-142 doi: 10.1016/j.jfluidstructs.2017.03.005
    [30] Nabae Y, Kawai K, Fukagata K. Prediction of drag reduction effect by streamwise traveling wave-like wall deformation in turbulent channel flow at practically high Reynolds numbers. International Journal of Heat and Fluid Flow, 2019, 82: 108550
    [31] Floryan J, Zandi S. Reduction of pressure losses and increase of mixing in laminar flows through channels with long-wavelength vibrations. Journal of Fluid Mechanics, 2019, 864: 670-707 doi: 10.1017/jfm.2019.21
    [32] Kaithakkal AJ, Kametani Y, Hasegawa Y. Dissimilarity between turbulent heat and momentum transfer induced by a streamwise travelling wave of wall blowing and suction. Journal of Fluid Mechanics, 2020, 886: 1045 doi: 10.1017/jfm-2019.1045
    [33] Kasagi N, Hasegawa Y, Fukagata K. Toward cost-effective control of wall turbulence for skin friction drag reduction//Advances in Turbulence XII, Proceedings of the 12th Euromech European Turbulence Conference, Berlin, Heidelberg: Springer, 2009
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  98
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 录用日期:  2021-06-19
  • 网络出版日期:  2021-06-19
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回