EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数据驱动印度洋海域全局动力学研究

李自刚 严旺 康佳琪 江俊 洪灵

李自刚, 严旺, 康佳琪, 江俊, 洪灵. 数据驱动印度洋海域全局动力学研究. 力学学报, 2021, 53(9): 2595-2602 doi: 10.6052/0459-1879-21-218
引用本文: 李自刚, 严旺, 康佳琪, 江俊, 洪灵. 数据驱动印度洋海域全局动力学研究. 力学学报, 2021, 53(9): 2595-2602 doi: 10.6052/0459-1879-21-218
Li Zigang, Yan Wang, Kang Jiaqi, Jiang Jun, Hong Ling. Data-driven global dynamics of the indian ocean. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2595-2602 doi: 10.6052/0459-1879-21-218
Citation: Li Zigang, Yan Wang, Kang Jiaqi, Jiang Jun, Hong Ling. Data-driven global dynamics of the indian ocean. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2595-2602 doi: 10.6052/0459-1879-21-218

数据驱动印度洋海域全局动力学研究

doi: 10.6052/0459-1879-21-218
基金项目: 国家自然科学基金资助项目(12172279, 11772243)
详细信息
    作者简介:

    李自刚, 副教授, 主要研究方向: 非线性随机系统全局动力学方法和应用. E-mail: lizigang@xust.edu.cn

  • 中图分类号: O324

DATA-DRIVEN GLOBAL DYNAMICS OF THE INDIAN OCEAN

  • 摘要: 海洋洋流运动非常复杂, 研究其内在规律能为海上搜救、污染物扩散预测和海运航线设计提供科学依据. 本文将基于空间离散思路的广义胞映射方法应用于数据驱动的海洋系统全局动力学分析中, 研究印度洋海域的长期和短期内在动态结构及其特性. 文中考虑到印度洋海域典型季风气候等因素的影响, 利用1979—2019年该区域浮漂历史数据, 建立不同时间尺度(天、季节或年度)下表征系统状态演化的一步转移概率矩阵, 并以此形成以胞刻画的海洋系统数据驱动动力学模型. 通过拓扑分析, 实现对印度洋海域洋流长短期动态全局吸引性结构(涡漩中心)及其影响区域(涡旋区)的表征. 对比分析显示, 浮漂样本的实际观察与预测的响应分布和演化特征高度吻合, 从而验证所提方法和结果的有效性和正确性. 研究结果表明: 大约在南纬20° ~ 40°, 东经40° ~ 96°范围内可形成明显的长期大范围的稳定涡旋区域, 导致大部分表面漂浮物动态聚集在该区域, 而南纬40°以南和赤道附近则表现为海洋表面流动的排斥性. 同时, 海洋系统中的短期动态涡旋结构主导了表面漂浮物的瞬态路径和趋势, 在2014年3月8日—14日期间形成南印度洋洋流的逆时针环流特点.

     

  • 图  1  印度洋海域部署的浮漂位置(黑色“*”)和运动轨迹(彩色实线)

    Figure  1.  The initial locations and trajectories of drifters deployed in the Indian Ocean

    图  2  印度洋长期海域涡旋结构和涡旋区

    Figure  2.  Long-term vortex structure and its regions of influence in the Indian Ocean

    图  3  印度洋海域洋流流动概率分布及动态演化: (a) 演化时间T = 3个月; (b) 演化时间T = 6个月; (c) 演化时间T = 9个月; (d) 演化时间T = 12个月

    Figure  3.  Probabilities and evolution of ocean currents in the region of the Indian Ocean: (a) evolving time T = 3 mon; (b) evolving time T = 6 mon; (c) evolving time T = 9 mon; (d) evolving time T = 12 mon

    图  4  2017—2019年浮漂的位置分布: (a) 2017年1月浮漂位置(“△”); (b) 2019年1月浮漂状态(“*”)与预测结果对比

    Figure  4.  Distributions of drifters during 2017−2019: (a) states of drifters in January, 2017; (b) Comparison of real states and predicted results in January, 2019

    图  5  印度洋海域平均流场图

    Figure  5.  Average stream field of Indian Ocean

    图  6  2014年3月8日—14日印度洋海域短期涡旋中心(黑色点)和涡旋域(彩色区域)

    Figure  6.  Short-term vortex cores and their regions of influence in the Indian Ocean on March 8 to 14, 2014

    图  7  2014年3月8日—14日不同涡旋中心周围的浮漂样本轨迹

    Figure  7.  Trajectories of samples near typical vortexes on March 8 to 14, 2014

  • [1] Kettyah CC, Andrew MM. The north atlantic oscillation as a source of stochastic forcing of the wind-driven ocean circulation. Dynamics of Atmospheres and Oceans, 2007, 43: 151-170 doi: 10.1016/j.dynatmoce.2006.12.002
    [2] Poulain PM, Gerin R, Mauri E, el al. Wind effects on drogued and undrogued drifters in the eastern Mediterranean. Journal of Atmospheric and Oceanic Technology, 2009, 26: 1144-1156 doi: 10.1175/2008JTECHO618.1
    [3] 杜岩, 陈举, 经志友等. 南海开放共享航次关键科学问题的思考——从多尺度海洋动力学角度出发. 热带海洋学报, 2020, 39(6): 1-17 (Du Yan, Chen Ju, Jing Zhiyou, et al. Thoughts on the key scientific issues of Shiptime Sharing Project/Open Cruise in the South China Sea—From the perspective of multi-scale ocean dynamics. Journal of Tropical Oceanography, 2020, 39(6): 1-17 (in Chinese)
    [4] 郑瑞玺, 经志友, 罗士浩. 南海北部反气旋涡旋边缘的次中尺度动力过程分析. 热带海洋学报, 2018, 37(3): 19-25 (Zheng Ruixi, Jing Zhiyou, Luo Shihao. Analysis of sub-mesoscale dynamic processes in the periphery of anticyclonic eddy in the northern South China Sea. Journal of Tropical Oceanography, 2018, 37(3): 19-25 (in Chinese)
    [5] Serra M, Sathe P, Rypina I, el al. Search and rescue at sea aided by hidden flow structures. Nature Communications, 2020, 11: 2525 doi: 10.1038/s41467-020-16281-x
    [6] 郭凯旋. 危险化学品海上漂移扩散数值模拟研究综述. 海洋预报, 2021, 38(2): 91-97 (Guo Kaixuan. Review on the numerical simulation of the drift and diffusion of marine hazardous chemicals. Marine Forecasts, 2021, 38(2): 91-97 (in Chinese)
    [7] 王驰, 梁法春, 何振楠等. 波浪作用下的海底管道溢油扩散运移规律. 河北工业科技, 2021, 38(3): 172-179 (Wang Chi, Liang Fachun, He Zhennan, et al. The law of diffusion and migration of oil spill from submarine pipelines under wave action. Hebei Journal of Industrial Science and Technology, 2021, 38(3): 172-179 (in Chinese)
    [8] 连汝续, 张燕玲, 黄兰. 引入地形因素的海洋动力学方程组整体弱解的稳定性. 河南师范大学学报(自然科学版), 2021, 49(3): 18-26 (Lian Ruxu, Zhang Yanling, Huang Lan. The stability of global weak solutions to the ocean dynamics equations with topography effects. Journal of Henan Normal University (Natural Science Edition), 2021, 49(3): 18-26 (in Chinese)
    [9] Varghese VA, Saha N. Investigation of stochastic nonlinear dynamics of ocean engineering systems through path integration. Physica D, 2020, 402(15): 132227
    [10] Yeo K, Melnyk I. Deep learning algorithm for data-driven simulation of noisy dynamical system. Journal of Computational Physics, 2019, 376: 1212-1231 doi: 10.1016/j.jcp.2018.10.024
    [11] Guo LL, Wu P, Lou SW. A multi-feature extraction technique based on principal component analysis for nonlinear dynamic process monitoring. Journal of Process Control, 2020, 85: 159-172 doi: 10.1016/j.jprocont.2019.11.010
    [12] Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Computers & Chemical Engineering, 2009, 33: 795-814
    [13] 薛红娟, 顾耀林. 拓扑分析在海洋特征提取中的应. 计算机工程, 2009, 35(3): 263-265 (Xue Hongjuan, Gu Yaolin. Application of topological analysis in ocean feature extraction. Computer Engineering, 2009, 35(3): 263-265 (in Chinese) doi: 10.3969/j.issn.1000-3428.2009.03.090
    [14] Capuano P, Lauro ED, Martino SD, et al. Analysis of water level oscillations by using methods of nonlinear dynamics. International Journal of Modern Physics B, 2009, 23(28): 5530-5542
    [15] Dong Y, Qin SJ. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 2018, 67: 1-11 doi: 10.1016/j.jprocont.2017.05.002
    [16] Schouten JC, Takens F, Bleek CM. Estimation of the dimension of a noisy attractor. Physical Review E, 1994, 50(3): 1851-1861 doi: 10.1103/PhysRevE.50.1851
    [17] Röhrs J, Sutherland G, Jeans G, et al. Analysis of flight MH370 potential debris trajectories using ocean observations and numerical model results. Journal of Operational Oceanography, 2016, 9(2): 126-138 doi: 10.1080/1755876X.2016.1248149
    [18] Miron P, Beron-Vera FJ, Olascoaga MJ, et al. Markov-chain-inspired search for MH370. Chaos, 2019, 29: 041105 doi: 10.1063/1.5092132
    [19] Grossi MD, Kubat M, Özgökmen TM. Predicting particle trajectories in oceanic flows using artificial neural networks. Ocean Modelling, 2020, 156: 101707 doi: 10.1016/j.ocemod.2020.101707
    [20] Li ZG, Jiang J, Hong L, et al. A subdomain synthesis method for global analysis of nonlinear dynamical systems based on cell mapping. Nonlinear Dynamics, 2019, 95: 715-726 doi: 10.1007/s11071-018-4592-4
    [21] Yue XL, Xu Y, Xu W, et al. Global invariant manifolds of dynamical systems with the compatible cell mapping method. International Journal of Bifurcation and Chaos, 2019, 29(8): 1950105 doi: 10.1142/S0218127419501050
    [22] Xiong FR, Qin ZC, Ding Q, et al. Parallel cell mapping method for global analysis of high-dimensional nonlinear dynamical systems. Journal of Applied Mechanics, 2015, 82(11): 111010 doi: 10.1115/1.4031149
    [23] 徐伟, 岳晓乐, 韩群. 胞映射方法及其在非线性随机动力学中的应用. 动力学与控制学报, 2017, 15(3): 200-208 (Xu Wei, Yue Xiaole, Han Qun. Cell mapping method and its applications in nonlinear stochastic dynamical system. Journal of Dynamic and Control, 2017, 15(3): 200-208 (in Chinese) doi: 10.6052/1672-6553-2017-023
    [24] 徐伟, 孙春艳, 孙建桥等. 胞映射方法的研究和进展. 力学进展, 2013, 43(1): 91-100 (Xu Wei, Sun Chunyan, Sun Jianqiao, el al. Development and study on cell mapping method. Advances in mechanics, 2013, 43(1): 91-100 (in Chinese)
    [25] Hsu CS. Cell to Cell Mapping: A Method of Global Analysis for Nonlinear Systems, Berlin: Springer, 1987
    [26] Li ZG, Jiang J, Hong L, et al. On the data-driven generalized cell mapping. International Journal of Bifurcation and Chaos, 2019, 29(14): 1950204 doi: 10.1142/S0218127419502043
    [27] Huang Y, Wu B, Li T, et al. Interdecadal Indian ocean basin mode driven by interdecadal pacific oscillation: A season-dependent growth mechanism. Journal of Climate, 2019, 32(7): 2057-2073 doi: 10.1175/JCLI-D-18-0452.1
    [28] Maximenko N, Hafner J, Niiler P. Pathways of marine debris derived from trajectories of Lagrangian drifters. Marine Pollution Bulletin, 2012, 65(1-3): 51-62 doi: 10.1016/j.marpolbul.2011.04.016
    [29] Xie JP, Zhu J. A dataset of global ocean surface currents for 1999-2007 derived from argo float trajectories: A comparison with surface drifter and TAO measurements. Atmospheric & Oceanic Science Letters, 2009, 2(2): 97-102
    [30] LaCasce JH. Statistics from Lagrangian observations. Progress in Oceanography, 2018, 77: 1-29
    [31] Chevillard L, Meneveau C. Lagrangian dynamics and statistical geometric structure of turbulence. Physical Review Letters, 2006, 97: 174501 doi: 10.1103/PhysRevLett.97.174501
    [32] 朱金杰, 陈朕, 孔琛等. 基于大偏差理论的随机动力学研究. 力学进展, 2020, 50(1): 202010 (Zhu Jinjie, Chen Zheng, Kong Chen, et al. The researches on the stochastic dynamics based on the large deviation theory. Advances in Mechanics, 2020, 50(1): 202010 (in Chinese)
    [33] Lev MV, Lab S. Experimental drift mapping of Indian ocean gyre aircraft debris. Open Journal of Applied Sciences, 2016, 6: 95-99
    [34] Schott FA, Xie SP, McCreary JP. Indian ocean circulation and climate variability. Reviews of Geophysics, 2009, 47: 2007RG000245
    [35] Sun JQ, Xiong FR, Schutze O, et al. Cell Mapping Methods− Algorithmic Approaches and Applications. Springer, Berlin, 2019
    [36] Maximenko N, Hafner J. Marine debris drift model simulates MH370 crash site and flow paths//IPRC, Honolulu, 2015
  • 加载中
图(7)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  67
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 录用日期:  2021-08-16
  • 网络出版日期:  2021-08-17
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回