EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧道开挖影响下地层-基础体系的接触力学响应分析

洪学飞 张顶立 方黄城 房倩 周墨臻 侯艳娟 孙振宇

洪学飞, 张顶立, 方黄城, 房倩, 周墨臻, 侯艳娟, 孙振宇. 隧道开挖影响下地层-基础体系的接触力学响应分析. 力学学报, 2021, 53(8): 2298-2311 doi: 10.6052/0459-1879-21-213
引用本文: 洪学飞, 张顶立, 方黄城, 房倩, 周墨臻, 侯艳娟, 孙振宇. 隧道开挖影响下地层-基础体系的接触力学响应分析. 力学学报, 2021, 53(8): 2298-2311 doi: 10.6052/0459-1879-21-213
Hong Xuefei, Zhang Dingli, Fang Huangcheng, Fang Qian, Zhou Mozhen, Hou Yanjuan, Sun Zhenyu. Contact mechanical response analysis of soil-foundation system under the influence of tunnel excavation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2298-2311 doi: 10.6052/0459-1879-21-213
Citation: Hong Xuefei, Zhang Dingli, Fang Huangcheng, Fang Qian, Zhou Mozhen, Hou Yanjuan, Sun Zhenyu. Contact mechanical response analysis of soil-foundation system under the influence of tunnel excavation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2298-2311 doi: 10.6052/0459-1879-21-213

隧道开挖影响下地层-基础体系的接触力学响应分析

doi: 10.6052/0459-1879-21-213
基金项目: 国家自然科学基金(51738002, U1934210), 国家重点研发计划(2017YFC0805401)资助项目
详细信息
    作者简介:

    张顶立, 教授, 主要从事隧道及地下工程方面的教学与研究工作. E-mail: zhang-dingli@263.net

  • 中图分类号: U459.3

CONTACT MECHANICAL RESPONSE ANALYSIS OF SOIL-FOUNDATION SYSTEM UNDER THE INFLUENCE OF TUNNEL EXCAVATION

  • 摘要: 针对隧道正交下穿既有结构施工力学响应的预测问题, 建立了考虑多体接触作用的隧道施工扰动下地层−基础体系力学响应解析预测方法. 该方法将地层视为均匀各向同性的线弹性体, 通过引入接触理论考虑地层与基础间的接触作用, 并提出“隧道开挖与基础作用换序求解”的新解析思路,确定了最终状态接触压力, 解决了隧道开挖及多体接触耦合作用下接触压力难以确定的问题, 进而依据弹性力学解的叠加性获得目标问题的解析解答. 通过对比该解析解与ABAQUS数值解, 发现两者吻合良好. 基于本方法开展参数分析, 研究了地层参数、隧道埋深、隧道边界径向位移以及外荷载集度对地表竖向附加位移、接触压力和基础内力分布的影响规律. 结果表明: 本方法可准确预测地层−基础体系的接触力学响应, 实现了地层与基础间接触力学行为的量化描述; 地层杨氏模量和泊松比对地层−基础体系力学响应的影响分别侧重于变形和受力, 而隧道埋深和隧道边界径向位移变化对受力变形均有较大影响; 地层位移受隧道开挖扰动与多体接触效应的耦合作用, 且接触影响范围局限在接触区域附近; 隧道开挖使接触压力产生“中间释放、端部集中”的重分布现象, 并由此造成基础内力的大幅增长. 当开挖扰动剧烈时, 甚至产生竖向位移不连续的脱空接触现象. 研究成果对城市浅埋隧道施工影响下地层−基础体系力学响应预测具有重要的理论意义和应用价值.

     

  • 图  1  目标问题的常规求解过程

    Figure  1.  General solving process of the target problem

    图  2  目标问题的求解新策略

    Figure  2.  New solving strategy for the target problem

    图  3  力学分析模型

    Figure  3.  Mechanical analysis models

    图  4  数值模型的几何示意和计算网格

    Figure  4.  Geometric sketch and computational mesh of numerical models

    图  5  不同工况解析解与数值解对比分析

    Figure  5.  Comparisons of analytical solution and numerical solution under different conditions

    图  6  网格尺寸Ms对接触压力计算结果的影响

    Figure  6.  Influence of mesh size, Ms, on calculation results of the contact pressure

    图  7  地层杨氏模量E的影响

    Figure  7.  Influence of the Young’s modulus of stratum (E)

    图  8  地层泊松比μ的影响

    Figure  8.  Influence of the Poisson’s ratio of stratum (μ)

    图  9  隧道埋深h的影响

    Figure  9.  Influence of the tunnel buried depth (h)

    图  10  均匀径向位移u0的影响

    Figure  10.  Influence of the uniform radial displacement (u0)

    图  11  外荷载集度q的影响

    Figure  11.  Influence of the intensity of external loads (q)

    表  1  模型计算参数

    Table  1.   Computational parameters of models

    Group no.Model no.E /MPaμh /mu0 /mmq /(kN·m−1)
    1 1 30 0.3 30 −60 20
    2 35
    3 40
    4 45
    5 50
    2 6 40 0.25 30 −60 20
    3 0.3
    7 0.35
    8 0.4
    3 9 40 0.3 23 −60 20
    10 24
    11 25
    12 28
    3 30
    4 13 40 0.3 20 −20 20
    14 −25
    15 −30
    16 −35
    17 −40
    5 18 40 0.3 20 −60 30
    19 35
    20 40
    21 45
    22 50
    下载: 导出CSV
  • [1] 张顶立, 李鹏飞, 侯艳娟等. 城市隧道开挖对地表建筑群的影响分析及其对策. 岩土工程学报, 2010, 32(2): 296-302 (Zhang Dingli, Li Pengfei, Hou Yanjuan, et al. Influence due to urban tunnel excavation on ground buildings and its countermeasures. Chinses Journal of Geotechnical Engineering, 2010, 32(2): 296-302 (in Chinese)
    [2] 范祚文, 张子新. 砂卵石地层土压力平衡盾构施工开挖面稳定及邻近建筑物影响模型试验研究. 岩石力学与工程学报, 2013, 32(12): 2506-2512 (Fan Zuowen, Zhang Zixin. Model test of excavation face stability of EPB shield in sandy cobble ground and adjacent building effect. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2506-2512 (in Chinese)
    [3] 李涛, 崔远, 刘波等. 岩-土复合地层隧道施工引起建筑物沉降计算. 华中科技大学学报(自然科学版), 2020, 48(3): 86-91 (Li Tao, Cui Yuan, Liu Bo, et al. Analytical solution of building settlement caused by underground tunnel construction in soil-stone composite stratum. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(3): 86-91 (in Chinese)
    [4] 张顶立. 城市地下工程施工诱发的安全事故及其控制. 科技导报, 2017, 35(5): 31-37 (Zhang Dingli. Safety accidents induced by urban underground engineering and their control. Science &Technology Review, 2017, 35(5): 31-37 (in Chinese)
    [5] 张顶立. 隧道及地下工程的基本问题及其研究进展. 力学学报, 2017, 49(1): 3-21 (Zhang Dingli. Essential issues and their research progress in tunnel and underground engineering. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 3-21 (in Chinese) doi: 10.6052/0459-1879-16-348
    [6] 杨公标, 张成平, 蔡义等. 考虑重力影响的含空洞地层浅埋隧道围岩应力及位移解析解. 中国公路学报, 2020, 33(3): 119-131 (Yang Gongbiao, Zhang Chengping, Cai Yi, et al. An analytical solution for stress and displacement of surrounding rock for a shallow tunnel with a cavity strata considering gravity condition. China Journal of Highway and Transport, 2020, 33(3): 119-131 (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.03.011
    [7] Sagaseta C. Analysis of undrained soil deformation due to ground loss. Geotechnique, 1987, 37(3): 301-320 doi: 10.1680/geot.1987.37.3.301
    [8] Verruijt A, Booker JR. Surface settlements due to deformation of a tunnel in an elastic half plane. Geotechnique, 1996, 46(4): 753-756 doi: 10.1680/geot.1996.46.4.753
    [9] Bobet A. Analytical solutions for shallow tunnels in saturated ground. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266 doi: 10.1061/(ASCE)0733-9399(2001)127:12(1258)
    [10] 张治国, 白乔木, 赵其华. 带衬砌浅埋隧道开挖受非对称收敛变形影响的地层位移和衬砌应力分析. 岩石力学与工程学报, 2016, 35(6): 1202-1213 (Zhang Zhiguo, Bai Qiaomu, Zhao Qihua. Elastic analysis of ground displacement and liner stress induced by shallow shield excavation considering non-uniform convergence deformation with liner. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1202-1213 (in Chinese)
    [11] 施成华, 彭立敏. 浅埋隧道开挖纵向地表变形预测及其基本规律. 中国公路学报, 2004, 17(2): 74-78 (Shi Chenghua, Peng Limin. Prediction of ground surface deformation in longitude due to tunnel excavation and its basic regularization. China Journal of Highway and Transport, 2004, 17(2): 74-78 (in Chinese)
    [12] 施成华, 彭立敏. 随机介质理论在盾构法隧道纵向地表沉降预测中的应用. 岩土力学, 2004, 25(2): 320-323 (Shi Chenghua, Peng Limin. Application of stochastic medium theory to predicting settlement in longitudinal surface due to tunnel construction by shield. Rock and Soil Mechanics, 2004, 25(2): 320-323 (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.02.030
    [13] Verruijt A. A complex variable solution for a deforming circular tunnel in an elastic half-plane. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2): 77-89 doi: 10.1002/(SICI)1096-9853(199702)21:2<77::AID-NAG857>3.0.CO;2-M
    [14] Zhang Z, Huang M, Pan Y, et al. Analytical prediction of time-dependent behavior for tunneling-induced ground movements and stresses subjected to surcharge loading based on rheological mechanics. Computers and Geotechnics, 2021, 129: 103858 doi: 10.1016/j.compgeo.2020.103858
    [15] Gao X, Wang HN, Jiang MJ. Analytical solutions for the displacement and stress of lined circular tunnel subjected to surcharge loadings in semi-infinite ground. Applied Mathematical Modelling, 2021, 89: 771-791 doi: 10.1016/j.apm.2020.07.061
    [16] 张治国, 张成平, 奚晓广. 双线隧道不同布置方式下相互作用影响的地层位移解析. 岩土工程学报, 2019, 41(2): 262-271 (Zhang Zhiguo, Zhang Chengping, Xi Xiaoguang. Closed solutions to soil displacements induced by twin-tunnel excavation under different layout patterns. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 262-271 (in Chinese)
    [17] Dutta SC, Roy R. A critical review on idealization and modeling for interaction among soil–foundation–structure system. Computers & Structures, 2002, 80(20-21): 1579-1594
    [18] Attewell PB, Yeates J, Selby AR. Soil Movements Induced by Tunnelling and Their Effects on Pipelines and Structures. Glasgow: Blackie, 1986
    [19] 侯艳娟. 城市隧道施工影响下地层与建筑物结构的动态作用关系及其应用. [博士论文]. 北京: 北京交通大学, 2010

    (Hou Yanjuan. Dynamic interaction between strata and building induced by urban tunnel construction and its application. [PhD Thesis]. Beijing: Beijing Jiaotong University, 2010 (in Chinese))
    [20] Liu X, Fang Q, Zhang D, et al. Behaviour of existing tunnel due to new tunnel construction below. Computers and Geotechnics, 2019, 110: 71-81 doi: 10.1016/j.compgeo.2019.02.013
    [21] 张桓, 张子新. 盾构隧道开挖引起既有管线的竖向变形. 同济大学学报(自然科学版), 2013, 41(8): 1172-1178 (Zhang Huan, Zhang Zixin. Vertical deflection of existing pipeline due to shield tunneling. Journal of Tongji University (Natural Science) , 2013, 41(8): 1172-1178 (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.08.009
    [22] 张治国, 鲁明浩, 徐晨等. 基于Kerr地基模型的隧道开挖诱发桩基变形简化方法. 现代隧道技术, 2016, 53(6): 55-66 (Zhang Zhiguo, Lu Minghao, Xu Chen, et al. Simplified solution for tunnelling-induced pile foundation deformation based on the Kerr foundation model. Modern Tunnelling Technology, 2016, 53(6): 55-66 (in Chinese)
    [23] 张治国, 徐晨, 宫剑飞. 考虑桩侧土体三维效应和地基剪切变形的隧道开挖对邻近桩基影响分析. 岩土工程学报, 2016, 38(5): 846-856 (Zhang Zhiguo, Xu Chen, Gong Jianfei. Influence of tunneling on deflection of adjacent piles considering shearing deformation of foundation and 3D effects of lateral soils beside piles. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 846-856 (in Chinese)
    [24] 梁荣柱, 夏唐代, 胡军华等. 新建隧道近距离上穿对既有地铁隧道纵向变形影响分析. 岩土力学, 2016, 37(S1): 391-399 (Liang Rongzhu, Xia Tangdai, Hu Junhua, et al. Analysis of longitudinal displacement of existing metro tunnel due to construction of above-crossing new tunnel in close distance. Rock and Soil Mechanics, 2016, 37(S1): 391-399 (in Chinese)
    [25] 周墨臻, 钱晓翔, 张丙印. 地下工程中的非线性接触算法研究及数值实现. 岩石力学与工程学报, 2014, 33(12): 2390-2395 (Zhou Mozhen, Qian Xiaoxiang, Zhang Bingyin. Algorithm and numerical analysis method for nonlinear contact problems in underground engineering. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2390-2395 (in Chinese)
    [26] Lin L, Lu Y, Chen F, et al. Analytic study of stress and displacement for shallow twin tunnels subjected to surcharge loads. Applied Mathematical Modelling, 2021, 93: 485-508 doi: 10.1016/j.apm.2020.12.012
    [27] Kong F, Lu D, Du X, et al. Analytical solution of stress and displacement for a circular underwater shallow tunnel based on a unified stress function. Ocean Engineering, 2021, 219: 108352 doi: 10.1016/j.oceaneng.2020.108352
    [28] 尹崇林, 吕爱钟, 陶钧烨. 光滑接触条件下非圆形有压隧洞应力及位移解析解. 长江科学院院报, 2018, 35(5): 85-92 (Yin Chonglin, Lu Aizhong, Tao Junye. Analytic solutions of stress and displacement for a non-circular pressure tunnel under full-slip contact condition. Journal of Yangtze River Scientific Research Institute, 2018, 35(5): 85-92 (in Chinese)
    [29] Fang H, Zhang D, Fang Q, et al. A generalized complex variable method for multiple tunnels at great depth considering the interaction between linings and surrounding rock. Computers and Geotechnics, 2021, 129: 103891 doi: 10.1016/j.compgeo.2020.103891
    [30] 方黄城, 张顶立, 文明等. 任意多孔条件下围岩力学分析的非迭代解析方法. 岩石力学与工程学报, 2020, 39(11): 2204-2212 (Fang Huangcheng, Zhang Dingli, Wen Ming, et al. A non-iterative analytical method for mechanical analysis of surrounding rock with arbitrary shape holes. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2204-2212 (in Chinese)
    [31] Johnson KL. Contact Mechanics. London: Cambridge University Press, 1985: 11-44
    [32] Mikhlin SG. Singular integral equations. in: Johnson KL (Ed.), Contact Mechanics. London: Cambridge University Press. 1985: 29-32
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  152
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 录用日期:  2021-07-20
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回