EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜爆轰发动机的推力性能理论分析

杨鹏飞 张子健 杨瑞鑫 滕宏辉 姜宗林

杨鹏飞, 张子健, 杨瑞鑫, 滕宏辉, 姜宗林. 斜爆轰发动机的推力性能理论分析. 力学学报, 2021, 53(10): 2853-2864 doi: 10.6052/0459-1879-21-206
引用本文: 杨鹏飞, 张子健, 杨瑞鑫, 滕宏辉, 姜宗林. 斜爆轰发动机的推力性能理论分析. 力学学报, 2021, 53(10): 2853-2864 doi: 10.6052/0459-1879-21-206
Yang Pengfei, Zhang Zijian, Yang Ruixin, Teng Honghui, Jiang Zonglin. Theorical study on propulsive performance of oblique detonation engine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 doi: 10.6052/0459-1879-21-206
Citation: Yang Pengfei, Zhang Zijian, Yang Ruixin, Teng Honghui, Jiang Zonglin. Theorical study on propulsive performance of oblique detonation engine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 doi: 10.6052/0459-1879-21-206

斜爆轰发动机的推力性能理论分析

doi: 10.6052/0459-1879-21-206
基金项目: 国家自然科学基金资助项目(11822202)
详细信息
    作者简介:

    滕宏辉, 教授, 主要研究方向: 爆轰物理及其应用. E-mail: hhteng@bit.edu.cn

  • 中图分类号: V439, O381

THEORICAL STUDY ON PROPULSIVE PERFORMANCE OF OBLIQUE DETONATION ENGINE

  • 摘要: 爆轰燃烧具有释热快、循环热效率高的特点. 斜爆轰发动机利用斜爆轰波进行燃烧组织, 在高超声速吸气式推进系统中具有重要地位. 以往研究主要关注斜爆轰波的起爆、驻定以及波系结构等, 缺少从整体层面出发对斜爆轰发动机开展推力性能分析. 本文将斜爆轰发动机内的流动和燃烧过程分解成进气压缩、燃料掺混、燃烧释热和排气膨胀4个基本模块并分别进行理论求解, 建立了斜爆轰发动机推力性能的理论分析模型. 在斜爆轰波系研究成果的基础上, 选取了过驱动斜爆轰、Chapman−Jouguet斜爆轰、过驱动正爆轰和斜激波诱导等容燃烧等4种燃烧模式来描述燃烧室内的燃烧释热过程, 并对比分析了不同燃烧模式对发动机比冲性能的影响. 此外, 还获得了不同来流参数、燃烧室参数和进排气参数等对发动机推力的影响规律, 发现来流马赫数和尾喷管的膨胀面积比是发动机理论燃料比冲的主要影响因素. 最后, 结合以往关于受限空间内斜爆轰波驻定特性等方面的研究成果, 提出了斜爆轰发动机燃烧室的设计方向.

     

  • 图  1  斜爆轰发动机原理图

    Figure  1.  Schematic diagram of the oblique detonation engine

    图  2  斜爆轰发动机4个典型工作过程示意图

    Figure  2.  Schematics of four typical processes in oblique detonation engine

    图  3  斜爆轰发动机燃烧室内复杂流动波系

    Figure  3.  Complex flow structures in a combustor of oblique detonation engine

    图  4  分析软件流程图

    Figure  4.  The flowchart of performance analysis software

    图  5  等动压飞行条件下, 燃料比冲Isp和飞行马赫数Ma随着飞行高度H的变化(动压q = 57.9 kPa)

    Figure  5.  Fuel specific impulse Isp and flight Mach number Ma as a function of flight altitude H with a constant dynamic pressure q = 57.9 kPa

    图  6  燃料比冲Isp随(a)飞行高度H和(b)飞行马赫数Ma的变化, (a) Ma = 12, (b) H = 35 km

    Figure  6.  Fuel specific impulse Isp as a function of (a) flight altitude H and (b) fuel specific impulse Isp as a function of flight Mach number Ma. (a) Ma = 12, (b) H = 35 km

    图  7  燃料比冲Isp随着(a)楔面角度θ和(b)当量比φ的变化

    Figure  7.  Fuel specific impulse Isp as a function of (a) wedge angle θ and (b) fuel specific impulse Isp as a function of equivalence ratio φ

    图  8  燃料比冲Isp随(a)进气压缩角度δ2和(b)尾喷管膨胀面积比εex的变化

    Figure  8.  Fuel specific impulse Isp as a function of (a) inlet angle δ2 and (b) fuel specific impulse Isp as a function of expansion ratio εex

    图  9  起爆区长度L和燃烧室入口温度T随飞行马赫数Ma的变化

    Figure  9.  Initiation length L and entrance temperature T as a function of inflow Mach number Ma

    表  1  4个工作过程的物理模型和关键参数

    Table  1.   Physical models and key parameters of four modules

    ProcessPhysical modelKey parameters
    compressionmulti-wedgesδ1, δ2, ···, δn
    mixingparallel jetsφ, Tt, pt
    heat releasedetonation/constant-volume combustionMac, θ
    exhaustisentropic expansion with a varying specific heatεex
    下载: 导出CSV

    表  2  默认参数下不同燃烧模式的燃料比冲

    Table  2.   Fuel specific impulse with the default engine parameters

    Combustion modesIsp/s
    OV-ODW1480.1
    CJ-ODW1927.3
    OV-NDW697.2
    SIC-CVC1865.8
    下载: 导出CSV

    表  3  不同燃烧模式下燃烧产物的状态

    Table  3.   States of combustion product with different combustion modes

    Combustion modesp/kPaT/KU/(m·s−1)σ
    OV-ODW268.93103.52817.70.162
    CJ-ODW129.52848.23168.10.178
    OV-NDW798.93768.7496.80.003
    SIC-CVC372.43136.72970.30.278
    下载: 导出CSV
  • [1] Wolański, P. Detonative propulsion. Proceedings of the Combustion Institute, 2013, 34: 125-158 doi: 10.1016/j.proci.2012.10.005
    [2] 滕宏辉, 杨鹏飞, 张义宁等. 斜爆震发动机的流动与燃烧机理. 中国科学: 物理学 力学 天文学, 2020, 50: 090008 (Teng Honghui, Yang Pengfei, Zhang Yining, et al. Flow and combustion mechanism of oblique detonation engines. Scientia Sinica:Physica,Mechanica &Astronomica, 2020, 50: 090008 (in Chinese)
    [3] Jiang Z, Zhang Z, Liu Y, et al. The criteria for hypersonic airbreathing propulsion and its experimental verification. Chinese Journal of Aeronautics, 2021, 34(3): 94-104 doi: 10.1016/j.cja.2020.11.001
    [4] Li C, Kailasanath K, Oran ES. Detonation structures behind oblique shocks. Physics of Fluids, 1994, 6: 1600-1611 doi: 10.1063/1.868273
    [5] Viguier C, Figueira da Silva LF, Desbordes D, et al. Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen-air mixture. Proceedings of the Combustion Institute, 1996, 26: 3023-3031 doi: 10.1016/S0082-0784(96)80146-9
    [6] Papalexandris MV. A numerical study of wedge-induced detonations. Combustion and Flame, 2000, 120: 526-538 doi: 10.1016/S0010-2180(99)00113-3
    [7] Yang P, Teng H, Jiang Z, et al. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model. Combustion and Flame, 2018, 193: 246-256 doi: 10.1016/j.combustflame.2018.03.026
    [8] Figueira da Silva LF, Deshaies B. Stabilization of an oblique detonation wave by a wedge: a parametric numerical study. Combustion and Flame, 2000, 121: 152-166 doi: 10.1016/S0010-2180(99)00141-8
    [9] Teng HH, Jiang ZL. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics, 2012, 713: 659-669 doi: 10.1017/jfm.2012.478
    [10] 滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展. 力学进展, 2020, 50: 202002 (Teng Honghui, Jiang Zonglin. Progress in multi-wave structure and stability of oblique detonations. Advances in Mechanics, 2020, 50: 202002 (in Chinese) doi: 10.6052/1000-0992-19-011
    [11] Choi JY, Kim DW, Jeung IS, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute, 2007, 31: 2473-2480 doi: 10.1016/j.proci.2006.07.173
    [12] Teng HH, Jiang ZL, Ng HD. Numerical study on unstable surfaces of oblique detonations. Journal of Fluid Mechanics, 2014, 744: 111-128 doi: 10.1017/jfm.2014.78
    [13] Yang P, Teng H, Ng HD, et al. A numerical study on the instability of oblique detonation waves with a two-step induction-reaction kinetic model. Proceedings of the Combustion Institute, 2019, 37: 3537-3544 doi: 10.1016/j.proci.2018.05.090
    [14] Martínez-Ruiz D, Huete C, Sánchez AL, et al. Theory of weakly exothermic oblique detonations. AIAA Journal, 2020, 58: 236-242 doi: 10.2514/1.J058460
    [15] Wang K, Teng H, Yang P, et al. Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner. Journal of Fluid Mechanics, 2020, 903: A28 doi: 10.1017/jfm.2020.644
    [16] Wang K, Zhang Z, Yang P, et al. Numerical study on reflection of an oblique detonation wave on an outward turning wall. Physics of Fluids, 2020, 32: 046101 doi: 10.1063/5.0001845
    [17] Zhang Z, Wen C, Zhang W, et al. Formation of stabilized oblique detonation waves in a combustor. Combustion and Flame, 2021, 223: 423-436
    [18] Bian J, Zhou L, Teng H. Structural and thermal analysis on oblique detonation influenced by different forebody compressions in hydrogen-air mixtures. Fuel, 2021, 286: 119458 doi: 10.1016/j.fuel.2020.119458
    [19] Yang P, Ng HD, Teng H. Numerical study of wedge-induced oblique detonations in unsteady flow. Journal of Fluid Mechanics, 2019, 876: 264-287 doi: 10.1017/jfm.2019.542
    [20] Iwata K, Nakaya S, Tsue M. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen–air mixture. Proceedings of the Combustion Institute, 2017, 36(2): 2761-2769 doi: 10.1016/j.proci.2016.06.094
    [21] McBride BJ, Zehe MJ, Gordon S. NASA Glenn coefficients for calculating thermodynamic properties of individual species, Report No. 2002-211556, NASA/TP, 2002
    [22] 王爱峰. 驻定斜爆轰的机理研究及其在高超推进中的应用探索. [博士论文]. 北京: 中国科学院研究生院, 2011

    (Wang Aifeng. Studies on mechanisms of the oblique detonation wave and its application to hypersonic propulsion [PhD Thesis]. Beijing: Graduate University of Chinese Academy of Sciences, 2011 (in Chinese))
    [23] 张子健. 斜爆轰推进理论、技术及其实验验证. [博士论文]. 北京: 中国科学院大学, 2020

    (Zhang Zijian. Oblique detonation propulsion theory, technology and its experimental demonstration [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese))
    [24] Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 2018, 50: 593-627 doi: 10.1146/annurev-fluid-122316-045217
    [25] Chan J, Sislian JP, Alexander D. Numerically simulated comparative performance of a Scramjet and Shcramjet at Mach 11. Journal of Propulsion and Power, 2010, 26(5): 1125-1134 doi: 10.2514/1.48144
    [26] Teng H, Tian C, Zhang Y, et al. Morphology of oblique detonation waves in a stoichiometric hydrogen–air mixture. Journal of Fluid Mechanics, 2021, 913: A1 doi: 10.1017/jfm.2020.1131
    [27] Rosato DA, Thornton M, Sosa J, et al. Stabilized detonation for hypersonic propulsion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118: e2102244118 doi: 10.1073/pnas.2102244118
    [28] Verreault J, Higgins AJ, Stowe RA. Formation and structure of steady oblique and conical detonation waves. AIAA Journal, 2012, 50(8): 1766-1772 doi: 10.2514/1.J051632
    [29] Bhattrai S, Tang H. Formation of near-Chapman–Jouguet oblique detonation wave over a dual-angle ramp. Aerospace Science and Technology, 2017, 63: 1-8 doi: 10.1016/j.ast.2016.12.010
    [30] 姜宗林. 气体爆轰物理及其统一框架理论. 北京: 科学出版社, 2020

    (Jiang Zonglin. Gaseous Detonation Physics and Its Universal Framework Theory. Beijing: Science Press, 2020 (in Chinses))
    [31] Shepherd JE. Explosion Dynamics Laboratory: Shock and Detonation Toolbox. http://shepherd.caltech.edu/EDL/PublicResources/sdt/, 2021
    [32] Burke MP, Chaos M, Ju Y, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion. International Journal of Chemical Kinetics, 2012, 44: 444-474 doi: 10.1002/kin.20603
    [33] 方宜申, 胡宗民, 滕宏辉等. 圆球诱发斜爆轰的数值研究. 力学学报, 2017, 49(2): 268-273 (Fang Yishen, Hu Zongmin, Teng Honghui, et al. Numerical study of the oblique detonation initiation induced by spheres. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 268-273 (in Chinese) doi: 10.6052/0459-1879-16-143
    [34] Fang Y, Zhang Z, Hu Z, et al. Initiation of oblique detonation waves induced by a blunt wedge in stoichiometric hydrogen-air mixtures. Aerospace Science and Technology, 2019, 92: 676-684 doi: 10.1016/j.ast.2019.06.031
    [35] Teng H, Zhang Y, Yang P, et al. Oblique detonation wave triggered by a double wedge in hypersonic flow. Chinese Journal of Aeronautics, 2021: accepted
    [36] Teng H, Bian J, Zhou L, et al. A numerical investigation of oblique detonation waves in hydrogen-air mixtures at low mach numbers. International Journal of Hydrogen Energy, 2021, 46: 10984-10994 doi: 10.1016/j.ijhydene.2020.12.180
    [37] 彭俊, 马嘉文, 杨鹏飞等. 斜爆轰波系在受限空间内的演变及其临界条件的数值研究. 推进技术, 2021, 42(4): 738-744 (Peng Jun, Ma Jiawen, Yang Pengfei, et al. Numerical study on structural evolution and transitional criteria of oblique detonation waves in confined space. Journal of Propulsion Technology, 2021, 42(4): 738-744 (in Chinese)
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  915
  • HTML全文浏览量:  392
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 录用日期:  2021-08-23
  • 网络出版日期:  2021-08-24
  • 刊出日期:  2021-10-26

目录

    /

    返回文章
    返回