THEORICAL STUDY ON PROPULSIVE PERFORMANCE OF OBLIQUE DETONATION ENGINE
-
摘要: 爆轰燃烧具有释热快、循环热效率高的特点. 斜爆轰发动机利用斜爆轰波进行燃烧组织, 在高超声速吸气式推进系统中具有重要地位. 以往研究主要关注斜爆轰波的起爆、驻定以及波系结构等, 缺少从整体层面出发对斜爆轰发动机开展推力性能分析. 本文将斜爆轰发动机内的流动和燃烧过程分解成进气压缩、燃料掺混、燃烧释热和排气膨胀4个基本模块并分别进行理论求解, 建立了斜爆轰发动机推力性能的理论分析模型. 在斜爆轰波系研究成果的基础上, 选取了过驱动斜爆轰、Chapman−Jouguet斜爆轰、过驱动正爆轰和斜激波诱导等容燃烧等4种燃烧模式来描述燃烧室内的燃烧释热过程, 并对比分析了不同燃烧模式对发动机比冲性能的影响. 此外, 还获得了不同来流参数、燃烧室参数和进排气参数等对发动机推力的影响规律, 发现来流马赫数和尾喷管的膨胀面积比是发动机理论燃料比冲的主要影响因素. 最后, 结合以往关于受限空间内斜爆轰波驻定特性等方面的研究成果, 提出了斜爆轰发动机燃烧室的设计方向.Abstract: Detonation combustion is characterized by the high thermodynamic efficiency and fast heat release. Benefitting from these potential advantages, an oblique detonation wave (ODW) is introduced into the combustion chamber and oblique detonation engine (ODE) plays an important role in hypersonic air-breathing propulsion systems. Previous studies mainly focused on the initiation structures, standing features and wave systems of oblique detonation, but the global analysis of ODE propulsive performance is still absent at the macro-level. In this paper, the flow and combustion processes of an ODE are decomposed into four basic modules, named as inlet model, mixing model, combustion mode and nozzle model, respectively. We solve these four basic flow processes using theoretical methods and propose a systematically theoretical approach that can be used to predict the ODE propulsion performance. On the basis of previous ODW initiation structures and waves systems, four different combustion modes, i.e., over-driven ODW, Chapman-Jouguet ODW, over-driven normal detonation wave and oblique shock-induced constant-volume combustion, are chosen to describe the heat release processes of combustible mixture in the ODE combustor. The effects of different combustion modes on fuel specific impulse of the ODE are also analyzed. In addition, the influence mechanisms of inflow parameters, combustor parameters and intake-exhaust parameters on the thrust performance of ODE are also obtained, and the results show that the major factor of fuel specific impulse of an ODE consists mainly of the inflow Mach number and the expansion ratio of engine nozzle. Finally, combined with precious detonation research results, such as the standing features and initiation structures of oblique detonation in a confined space, the preliminary design direction of oblique detonation engine are proposed, which mainly involve some constrained conditions, such as geometrical constraints, inflow velocity limitations and stability ranges of a detonation wave in ODE combustor.
-
Key words:
- oblique detonation wave /
- engine /
- propulsive performance /
- combustion mode
-
表 1 4个工作过程的物理模型和关键参数
Table 1. Physical models and key parameters of four modules
Process Physical model Key parameters compression multi-wedges δ1, δ2, ···, δn mixing parallel jets φ, Tt, pt heat release detonation/constant-volume combustion Mac, θ exhaust isentropic expansion with a varying specific heat εex 表 2 默认参数下不同燃烧模式的燃料比冲
Table 2. Fuel specific impulse with the default engine parameters
Combustion modes Isp/s OV-ODW 1480.1 CJ-ODW 1927.3 OV-NDW 697.2 SIC-CVC 1865.8 表 3 不同燃烧模式下燃烧产物的状态
Table 3. States of combustion product with different combustion modes
Combustion modes p/kPa T/K U/(m·s−1) σ OV-ODW 268.9 3103.5 2817.7 0.162 CJ-ODW 129.5 2848.2 3168.1 0.178 OV-NDW 798.9 3768.7 496.8 0.003 SIC-CVC 372.4 3136.7 2970.3 0.278 -
[1] Wolański, P. Detonative propulsion. Proceedings of the Combustion Institute, 2013, 34: 125-158 doi: 10.1016/j.proci.2012.10.005 [2] 滕宏辉, 杨鹏飞, 张义宁等. 斜爆震发动机的流动与燃烧机理. 中国科学: 物理学 力学 天文学, 2020, 50: 090008 (Teng Honghui, Yang Pengfei, Zhang Yining, et al. Flow and combustion mechanism of oblique detonation engines. Scientia Sinica:Physica,Mechanica &Astronomica, 2020, 50: 090008 (in Chinese) [3] Jiang Z, Zhang Z, Liu Y, et al. The criteria for hypersonic airbreathing propulsion and its experimental verification. Chinese Journal of Aeronautics, 2021, 34(3): 94-104 doi: 10.1016/j.cja.2020.11.001 [4] Li C, Kailasanath K, Oran ES. Detonation structures behind oblique shocks. Physics of Fluids, 1994, 6: 1600-1611 doi: 10.1063/1.868273 [5] Viguier C, Figueira da Silva LF, Desbordes D, et al. Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen-air mixture. Proceedings of the Combustion Institute, 1996, 26: 3023-3031 doi: 10.1016/S0082-0784(96)80146-9 [6] Papalexandris MV. A numerical study of wedge-induced detonations. Combustion and Flame, 2000, 120: 526-538 doi: 10.1016/S0010-2180(99)00113-3 [7] Yang P, Teng H, Jiang Z, et al. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model. Combustion and Flame, 2018, 193: 246-256 doi: 10.1016/j.combustflame.2018.03.026 [8] Figueira da Silva LF, Deshaies B. Stabilization of an oblique detonation wave by a wedge: a parametric numerical study. Combustion and Flame, 2000, 121: 152-166 doi: 10.1016/S0010-2180(99)00141-8 [9] Teng HH, Jiang ZL. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics, 2012, 713: 659-669 doi: 10.1017/jfm.2012.478 [10] 滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展. 力学进展, 2020, 50: 202002 (Teng Honghui, Jiang Zonglin. Progress in multi-wave structure and stability of oblique detonations. Advances in Mechanics, 2020, 50: 202002 (in Chinese) doi: 10.6052/1000-0992-19-011 [11] Choi JY, Kim DW, Jeung IS, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute, 2007, 31: 2473-2480 doi: 10.1016/j.proci.2006.07.173 [12] Teng HH, Jiang ZL, Ng HD. Numerical study on unstable surfaces of oblique detonations. Journal of Fluid Mechanics, 2014, 744: 111-128 doi: 10.1017/jfm.2014.78 [13] Yang P, Teng H, Ng HD, et al. A numerical study on the instability of oblique detonation waves with a two-step induction-reaction kinetic model. Proceedings of the Combustion Institute, 2019, 37: 3537-3544 doi: 10.1016/j.proci.2018.05.090 [14] Martínez-Ruiz D, Huete C, Sánchez AL, et al. Theory of weakly exothermic oblique detonations. AIAA Journal, 2020, 58: 236-242 doi: 10.2514/1.J058460 [15] Wang K, Teng H, Yang P, et al. Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner. Journal of Fluid Mechanics, 2020, 903: A28 doi: 10.1017/jfm.2020.644 [16] Wang K, Zhang Z, Yang P, et al. Numerical study on reflection of an oblique detonation wave on an outward turning wall. Physics of Fluids, 2020, 32: 046101 doi: 10.1063/5.0001845 [17] Zhang Z, Wen C, Zhang W, et al. Formation of stabilized oblique detonation waves in a combustor. Combustion and Flame, 2021, 223: 423-436 [18] Bian J, Zhou L, Teng H. Structural and thermal analysis on oblique detonation influenced by different forebody compressions in hydrogen-air mixtures. Fuel, 2021, 286: 119458 doi: 10.1016/j.fuel.2020.119458 [19] Yang P, Ng HD, Teng H. Numerical study of wedge-induced oblique detonations in unsteady flow. Journal of Fluid Mechanics, 2019, 876: 264-287 doi: 10.1017/jfm.2019.542 [20] Iwata K, Nakaya S, Tsue M. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen–air mixture. Proceedings of the Combustion Institute, 2017, 36(2): 2761-2769 doi: 10.1016/j.proci.2016.06.094 [21] McBride BJ, Zehe MJ, Gordon S. NASA Glenn coefficients for calculating thermodynamic properties of individual species, Report No. 2002-211556, NASA/TP, 2002 [22] 王爱峰. 驻定斜爆轰的机理研究及其在高超推进中的应用探索. [博士论文]. 北京: 中国科学院研究生院, 2011(Wang Aifeng. Studies on mechanisms of the oblique detonation wave and its application to hypersonic propulsion [PhD Thesis]. Beijing: Graduate University of Chinese Academy of Sciences, 2011 (in Chinese)) [23] 张子健. 斜爆轰推进理论、技术及其实验验证. [博士论文]. 北京: 中国科学院大学, 2020(Zhang Zijian. Oblique detonation propulsion theory, technology and its experimental demonstration [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese)) [24] Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 2018, 50: 593-627 doi: 10.1146/annurev-fluid-122316-045217 [25] Chan J, Sislian JP, Alexander D. Numerically simulated comparative performance of a Scramjet and Shcramjet at Mach 11. Journal of Propulsion and Power, 2010, 26(5): 1125-1134 doi: 10.2514/1.48144 [26] Teng H, Tian C, Zhang Y, et al. Morphology of oblique detonation waves in a stoichiometric hydrogen–air mixture. Journal of Fluid Mechanics, 2021, 913: A1 doi: 10.1017/jfm.2020.1131 [27] Rosato DA, Thornton M, Sosa J, et al. Stabilized detonation for hypersonic propulsion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118: e2102244118 doi: 10.1073/pnas.2102244118 [28] Verreault J, Higgins AJ, Stowe RA. Formation and structure of steady oblique and conical detonation waves. AIAA Journal, 2012, 50(8): 1766-1772 doi: 10.2514/1.J051632 [29] Bhattrai S, Tang H. Formation of near-Chapman–Jouguet oblique detonation wave over a dual-angle ramp. Aerospace Science and Technology, 2017, 63: 1-8 doi: 10.1016/j.ast.2016.12.010 [30] 姜宗林. 气体爆轰物理及其统一框架理论. 北京: 科学出版社, 2020(Jiang Zonglin. Gaseous Detonation Physics and Its Universal Framework Theory. Beijing: Science Press, 2020 (in Chinses)) [31] Shepherd JE. Explosion Dynamics Laboratory: Shock and Detonation Toolbox. http://shepherd.caltech.edu/EDL/PublicResources/sdt/, 2021 [32] Burke MP, Chaos M, Ju Y, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion. International Journal of Chemical Kinetics, 2012, 44: 444-474 doi: 10.1002/kin.20603 [33] 方宜申, 胡宗民, 滕宏辉等. 圆球诱发斜爆轰的数值研究. 力学学报, 2017, 49(2): 268-273 (Fang Yishen, Hu Zongmin, Teng Honghui, et al. Numerical study of the oblique detonation initiation induced by spheres. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 268-273 (in Chinese) doi: 10.6052/0459-1879-16-143 [34] Fang Y, Zhang Z, Hu Z, et al. Initiation of oblique detonation waves induced by a blunt wedge in stoichiometric hydrogen-air mixtures. Aerospace Science and Technology, 2019, 92: 676-684 doi: 10.1016/j.ast.2019.06.031 [35] Teng H, Zhang Y, Yang P, et al. Oblique detonation wave triggered by a double wedge in hypersonic flow. Chinese Journal of Aeronautics, 2021: accepted [36] Teng H, Bian J, Zhou L, et al. A numerical investigation of oblique detonation waves in hydrogen-air mixtures at low mach numbers. International Journal of Hydrogen Energy, 2021, 46: 10984-10994 doi: 10.1016/j.ijhydene.2020.12.180 [37] 彭俊, 马嘉文, 杨鹏飞等. 斜爆轰波系在受限空间内的演变及其临界条件的数值研究. 推进技术, 2021, 42(4): 738-744 (Peng Jun, Ma Jiawen, Yang Pengfei, et al. Numerical study on structural evolution and transitional criteria of oblique detonation waves in confined space. Journal of Propulsion Technology, 2021, 42(4): 738-744 (in Chinese) -