EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电超构材料及其波动控制研究: 现状与展望

袁毅 游镇宇 陈伟球

袁毅, 游镇宇, 陈伟球. 压电超构材料及其波动控制研究: 现状与展望. 力学学报, 2021, 53(8): 2101-2116 doi: 10.6052/0459-1879-21-198
引用本文: 袁毅, 游镇宇, 陈伟球. 压电超构材料及其波动控制研究: 现状与展望. 力学学报, 2021, 53(8): 2101-2116 doi: 10.6052/0459-1879-21-198
Yuan Yi, You Zhenyu, Chen Weiqiu. Piezoelectric metamaterials and wave control: status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116 doi: 10.6052/0459-1879-21-198
Citation: Yuan Yi, You Zhenyu, Chen Weiqiu. Piezoelectric metamaterials and wave control: status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116 doi: 10.6052/0459-1879-21-198

压电超构材料及其波动控制研究: 现状与展望

doi: 10.6052/0459-1879-21-198
基金项目: 国家自然科学基金(11532001, 11872339)和浙江省自然科学基金(LD21A020001)资助项目
详细信息
    作者简介:

    陈伟球, 教授, 主要研究方向: 智能材料和结构力学、可调声子晶体与超材料. E-mail: chenwq@zju.edu.cn

  • 中图分类号: O327

PIEZOELECTRIC METAMATERIALS AND WAVE CONTROL: STATUS QUO AND PROSPECTS

  • 摘要: 弹性波超构材料是一种人为设计的周期结构材料, 因其独特的力学性能而受到广泛的关注, 在军用和民用领域都展现出重要而独特的应用前景. 根据需求主动或被动地调控弹性波超构材料的力学特性, 能够赋予其更强的适用性能. 其调控的方式多种多样, 其中运用压电材料进行调控是一种方便、速度快、精度高、体积小且价格低的调控方式. 文章中首先简要地介绍弹性波超构材料、可调超构材料、压电材料和几种常用的分流电路的基本特性. 然后依据压电材料在弹性波超构材料中应用形式的不同, 将其分为两大类: 第一类中, 压电材料作为主体结构材料或主体结构的一部分组成材料; 第二类中, 压电材料主要以压电弹簧或压电片的形式贴附于主体结构的表面或内嵌在结构中, 作为激励器或/和传感器. 文章主要介绍两种类型弹性波超构材料的研究内容和发展历史, 涉及带隙调控、波导、负折射、超传输、拓扑态、隐身以及外接分流电路等. 最后总结压电弹性波超构材料研究的不足之处并给出相应的未来研究展望.

     

  • 图  1  压电声子晶体和压电超材料(a)研究文献数量趋势及(b)学科分布情况

    Figure  1.  (a) Trends in the number of research documents and (b) discipline distribution on piezoelectric phononic crystals and piezoelectric metamaterials

    图  2  常见压电分流电路图汇总[42]

    Figure  2.  Summary of common piezoelectric shunt circuit diagrams[42]

    图  3  两类压电超构材料示意图

    Figure  3.  Schematic diagrams of two categories of piezoelectric metamaterials

    图  4  夹杂形状对二维压电声子晶体带隙的影响[86]

    Figure  4.  The influence of inclusion shape on the band gap of two-dimensional piezoelectric phononic crystals[86]

    图  5  非线性压电超结构带隙调控与超传输[97]

    Figure  5.  Band gap regulation and super transmission of nonlinear piezoelectric metastructure[97]

    图  6  A-B-A压电杆系统中主动可调拓扑态[105]

    Figure  6.  Active tunable topological state in A-B-A piezoelectric rod system[105]

    图  7  可主动调控弹性波隐身的超构材料板[143]

    Figure  7.  Actively tunable cloak of elastic wave in metastructured plate[143]

    图  8  内质量晶格声子晶体及其负电容电路控制[149]

    Figure  8.  The mass-in-mass lattice phononic crystal and its negative capacitance circuit control[149]

    图  9  Zhou等[152]利用负电容分流电路和局域共振单元获得的极宽低频带隙

    Figure  9.  Zhou et al.[152] used negative capacitance shunt circuit and local resonance unit to obtain extremely wide low frequency band gap

    表  1  常见压电分流电路总结

    Table  1.   Summary of common piezoelectric shunt circuits

    CircuitCharacteristics
    resistive shunts (R)passive (or autonomous), simple structure, low cost, but low damping effectiveness
    resonant single-mode shunts (RL)passive, simple structure, in-series or in-parallel, resonant shunts, effective vibration attenuation but only one narrow range, require large inductance in low frequency
    resonant multi-mode shunt circuitspassive, effective in multiple frequency bands compared to single-mode, but much more complicated and expensive as the mode increases
    negative capacitance shunts (NC)semi-active, continuously adjust large frequency bands, both high frequency and low frequency, various application forms, but more complicated and unstable
    adaptive shunt circuitsperform online adaption of their impedance, always combine with other shunt circuit, as adaptive RL-shunt、adaptive RLCN-shunt circuit et al.
    synchronized switch damping
    shunt circuits (SSD)
    semi-passive, nonlinear, turned on and off synchronously with the structure vibration period, adapt to different excitation frequencies、such as SSDS\SSDI\SSDNC\SSDV\SSDCI, but arising the higher order harmonics
    下载: 导出CSV
  • [1] Liu J, Guo H, Wang T. A review of acoustic metamaterials and phononic crystals. Crystals, 2020, 10(4): 305 doi: 10.3390/cryst10040305
    [2] Liao G, Luan C, Wang Z, et al. Acoustic metamaterials: A review of theories, structures, fabrication approaches, and applications. Advanced Materials Technologies, 2021, 6(5): 2000787 doi: 10.1002/admt.202000787
    [3] Markos P, Soukoulis CM. Left handed materials. Microwave and Optical Technology Letters, 2002, 42(5): 369-373
    [4] Xia YN. Photonic crystals. Advanced Materials, 2004, 13(6): 369
    [5] Kushwaha MS, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71(13): 2022-2025 doi: 10.1103/PhysRevLett.71.2022
    [6] Wilczek F. Quantum time crystals. Physical Review Letters, 2012, 109(16): 160401 doi: 10.1103/PhysRevLett.109.160401
    [7] He Q, Sun S, Xiao S, et al. High-efficiency metasurfaces: principles, realizations, and applications. Advanced Optical Materials, 2018, 6(19): 1800415 doi: 10.1002/adom.201800415
    [8] 李峰. 超材料技术专利布局现状及启示. http://www.nipso.cn/onews.asp?id=37466. 2017

    (Li Feng. Current situation and enlightenment of metamaterial technology patent arrangement. http://www.nipso.cn/onews.asp?id=37466. 2017 (in Chinese))
    [9] Achenbach JD. Wave Propagation in Elastic Solids. Amsterdam: North-Holland, 1973
    [10] 温激鸿. 人工周期结构中弹性波的传播. 北京: 科学出版社, 2015

    (Wen Jihong. Propagation of Elastic Wave in Artificial Periodic Structure. Beijing: Science Press, 2015 (in Chinese))
    [11] Liu ZY, Zhang XX, Mao YW, et al. Locally resonant sonic materials. Science, 2000, 289(5485): 1734-1736 doi: 10.1126/science.289.5485.1734
    [12] 周济, 李龙土. 超材料技术及其应用展望. 中国工程科学, 2018, 20(6): 69-74 (Zhou Ji, Li Longtu. Metamaterial technology and its application prospects. Strategic Study of CAE, 2018, 20(6): 69-74 (in Chinese)
    [13] 陈毅, 张泉, 张亚飞等. 弹性拓扑材料研究进展. 力学进展, 2021, 51(2): 1-69 (Chen Yi, Zhang Quan, Zhang Yafei, et al. Research progress of elastic topological materials. Advances in Mechanics, 2021, 51(2): 1-69 (in Chinese)
    [14] 田源, 葛浩, 卢明辉等. 声学超构材料及其物理效应的研究进展. 物理学报, 2019, 68(19): 194301 (Tian Yuan, Ge Hao, Lu Minghui, et al. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019, 68(19): 194301 (in Chinese) doi: 10.7498/aps.68.20190850
    [15] Goffaux C, Vigneron JP. Theoretical study of a tunable phononic band gap system. Physical Review B, 2001, 64(7): 075118 doi: 10.1103/PhysRevB.64.075118
    [16] Lin SCS, Huang TJ. Tunable phononic crystals with anisotropic inclusions. Physical Review B, 2011, 83(17): 174303 doi: 10.1103/PhysRevB.83.174303
    [17] Wu FG, Liu ZY, Liu YY. Acoustic band gaps created by rotating square rods in a two-dimensional lattice. Physical Review E, 2002, 66(4): 046628 doi: 10.1103/PhysRevE.66.046628
    [18] Tian Y, Tan Z, Han X, et al. Phononic crystal lens with an asymmetric scatterer. Journal of Physics D: Applied Physics, 2018, 52(2): 025102
    [19] Li J, Wang YT, Chen WQ, et al. Harnessing inclusions to tune post-buckling deformation and bandgaps of soft porous periodic structures. Journal of Sound and Vibration, 2019, 459: 114848 doi: 10.1016/j.jsv.2019.114848
    [20] Ning S, Yang F, Luo C, et al. Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation. Extreme Mechanics Letters, 2020, 35: 100623 doi: 10.1016/j.eml.2019.100623
    [21] Chen YJ, Wu B, Li J, et al. Low-frequency tunable topological interface states in soft phononic crystal cylinders. International Journal of Mechanical Sciences, 2021, 191: 106098 doi: 10.1016/j.ijmecsci.2020.106098
    [22] Huang YL, Shen XD, Zhang CL, et al. Mechanically tunable band gaps in compressible soft phononic laminated composites with finite deformation. Physics Letters A, 2014, 378(30-31): 2285-2289 doi: 10.1016/j.physleta.2014.05.032
    [23] Huang YL, Li J, Chen WQ, et al. Tunable bandgaps in soft phononic plates with spring-mass-like resonators. International Journal of Mechanical Sciences, 2019, 151: 300-313 doi: 10.1016/j.ijmecsci.2018.11.029
    [24] Bertoldi K, Boyce MC. Mechanically-triggered transformations of phononic band gaps in periodic elastomeric structures. Physical Review B, 2008, 77: 052105
    [25] Bertoldi K, Boyce MC, Deschanel S, et al. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures. Journal of the Mechanics and Physics of Solids, 2008, 56(8): 2642-2668 doi: 10.1016/j.jmps.2008.03.006
    [26] Lv XF, Xu SF, Huang ZL, et al. A shape memory alloy-based tunable phononic crystal beam attached with concentrated masses. Physics Letters A, 2020, 384(2): 126056 doi: 10.1016/j.physleta.2019.126056
    [27] Yuan Y, Li J, Bao RH, et al. A double-layer metastructured beam with contact-separation switchability. Mechanics of Advanced Materials and Structures, 2020, 2020(2): 1-9
    [28] Jandron MA, Henann DL. Exploring phononic crystal tunability using dielectric elastomers. The Journal of the Acoustical Society of America, 2017, 141(5): 3743-3743
    [29] Jandron MA, Henann DL. A numerical simulation capability for electroelastic wave propagation in dielectric elastomer composites: Application to tunable soft phononic crystals. International Journal of Solids and Structures, 2018, 150: 1-21 doi: 10.1016/j.ijsolstr.2018.04.023
    [30] Robillard JF, Matar OB, Vasseur JO, et al. Tunable magnetoelastic phononic crystals. Applied Physics Letters, 2009, 95(12): 124104 doi: 10.1063/1.3236537
    [31] Matar BO, Robillard JF, Vasseur JO, et al. Band gap tunability of magneto-elastic phononic crystal. Journal of Applied Physics, 2012, 111(5): 054901 doi: 10.1063/1.3687928
    [32] Zhang SZ, Gao YW. Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam. Journal of Physics D: Applied Physics, 2017, 50(44): 445303 doi: 10.1088/1361-6463/aa8878
    [33] Zhang G, Gao YW. Tunability of band gaps in two-dimensional phononic crystals with magnetorheological and electrorheological composites. Acta Mechanica Solida Sinica, 2021, 34(1): 40-52 doi: 10.1007/s10338-020-00189-6
    [34] Yeh JY. Control analysis of the tunable phononic crystal with electrorheological material. Physica B: Condensed Matter, 2007, 400(1-2): 137-144 doi: 10.1016/j.physb.2007.06.030
    [35] Tang H, Luo CR, Zhao XP. Tunable characteristics of a flexible thin electrorheological layer for low frequency acoustic waves. Journal of Physics D: Applied Physics, 2004, 37(16): 2331 doi: 10.1088/0022-3727/37/16/017
    [36] Bayat A, Gordaninejad F. Band-gap of a soft magnetorheological phononic crystal. Journal of Vibration and Acoustics, 2015, 137(1): 1013
    [37] Xu Z, Wu F, Guo Z. Shear-wave band gaps tuned in two-dimensional phononic crystals with magnetorheological material. Solid State Communications, 2013, 154: 43-45 doi: 10.1016/j.ssc.2012.10.040
    [38] Zhang XH, Qu ZG, Xu Y. Enhanced sound absorption in two-dimensional continuously graded phononic crystals. Japanese Journal of Applied Physics, 2019, 58(9): 090904 doi: 10.7567/1347-4065/ab3686
    [39] Zhang XH, Qu ZG, Tian D, et al. Acoustic characteristics of continuously graded phononic crystals. Applied Acoustics, 2019, 151: 22-29 doi: 10.1016/j.apacoust.2019.03.002
    [40] 宋道仁, 肖鸣山. 压电效应及其应用. 北京: 科学普及出版社, 1987

    (Song Daoren, Xiao Mingshan. Piezoelectric Effect and Its Applications. Beijing: Science Popularization Press, 1987 (in Chinese))
    [41] Ji HL, Qiu JH, Cheng J, et al. Application of a negative capacitance circuit in synchronized switch damping techniques for vibration suppression. Journal of Vibration and Acoustics, 2011, 133(4): 041015-1 doi: 10.1115/1.4003146
    [42] Gripp JAB, Rade DA. Vibration and noise control using shunted piezoelectric transducers: A review. Mechanical Systems and Signal Processing, 2018, 112: 359 doi: 10.1016/j.ymssp.2018.04.041
    [43] Leo DJ. Engineering Analysis of Smart Material Systems. New Jersey: John Wiley and Sons, 2007
    [44] Hagood NW, Flotow AV. Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration, 1991, 146(2): 243-268 doi: 10.1016/0022-460X(91)90762-9
    [45] Forward RL. Electronic damping of vibrations in optical structures. Applied Optics, 1979, 18(5): 690 doi: 10.1364/AO.18.000690
    [46] Wu SY. Piezoelectric shunts with a parallel R-L circuit for structural damping and vibration control. Proceedings of SPIE - The International Society for Optical Engineering, 1996, 2720: 259-269
    [47] Antoniou A. Realisation of gyrators using operational amplifiers, and their use in RC-active-network synthesis. Proceedings of the Institution of Electrical Engineers, 1969, 116(11): 1838-1850 doi: 10.1049/piee.1969.0339
    [48] Wu SY. Method for multiple mode piezoelectric shunting with single PZT transducer for vibration control. Journal of Intelligent Material Systems and Structures, 1998, 9(12): 991-998 doi: 10.1177/1045389X9800901204
    [49] Behrens S, Moheimani SOR, Fleming AJ. Multiple mode current flowing passive piezoelectric shunt controller. Journal of Sound and Vibration, 2003, 266(5): 929-942 doi: 10.1016/S0022-460X(02)01380-9
    [50] Fleming AJ, Behrens S, Moheimani SOR. Synthetic impedance for implementation of piezoelectric shunt-damping circuits. Electronics Letters, 2000, 36(18): 1525-1526 doi: 10.1049/el:20001083
    [51] Merrill JL. Theory of the negative impedance converter. Bell Labs Technical Journal, 1951, 30(1): 88-109 doi: 10.1002/j.1538-7305.1951.tb01368.x
    [52] Marneffe BD, Preumont A. Vibration damping with negative capacitance shunts: theory and experiment. Smart Material Structures, 2008, 17(3): 035015 doi: 10.1088/0964-1726/17/3/035015
    [53] Park CH, Baz AM. Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. Journal of Vibration and Control, 2005, 11(3): 331-346 doi: 10.1177/107754605040949
    [54] Neubauer M, Oleskiewicz R, Popp K, et al. Optimization of damping and absorbing performance of shunted piezo elements utilizing negative capacitance. Journal of Sound and Vibration, 2006, 298(1): 84-107
    [55] Han X, Neubauer M, Wallaschek J. Improved piezoelectric switch shunt damping technique using negative capacitance. Journal of Sound and Vibration, 2013, 332(1): 7-16 doi: 10.1016/j.jsv.2012.08.001
    [56] Bao B, Lallart M, Guyomar D. Manipulating elastic waves through piezoelectric metamaterial with nonlinear electrical switched Dual-connected topologies. International Journal of Mechanical Sciences, 2020, 172: 105423 doi: 10.1016/j.ijmecsci.2020.105423
    [57] Beck BS, Cunefare KA, Collet M. The power output and efficiency of a negative capacitance shunt for vibration control of a flexural system. Smart Materials and Structures, 2013, 22(6): 065009 doi: 10.1088/0964-1726/22/6/065009
    [58] Manzoni S, Moschini S, Redaelli M, et al. Vibration attenuation by means of piezoelectric transducer shunted to synthetic negative capacitance. Journal of Sound and Vibration, 2012, 331(21): 4644-4657 doi: 10.1016/j.jsv.2012.05.014
    [59] Behrens S, Fleming AJ, Moheimani SOR. A broadband controller for shunt piezoelectric damping of structural vibration. Smart Materials and Structures, 2003, 12(1): 18-28 doi: 10.1088/0964-1726/12/1/303
    [60] Date M, Kutani M, Sakai S. Electrically controlled elasticity utilizing piezoelectric coupling. Journal of Applied Physics, 2000, 87(2): 863-868 doi: 10.1063/1.371954
    [61] Imoto K, Nishiura M, Yamamoto K, et al. Elasticity control of piezoelectric lead zirconate titanate (PZT) materials using negative-capacitance circuits. Japanese Journal of Applied Physics, 2014, 44: 7019-7023
    [62] Beck BS, Cunefare KA, Ruzzene M, et al. Experimental analysis of a cantilever beam with a shunted piezoelectric periodic array. Journal of Intelligent Material Systems and Structures, 2011, 22(11): 1177-1187 doi: 10.1177/1045389X11411119
    [63] Park C, Park H. Multiple-mode structural vibration control using negative capacitive shunt damping. KSME International Journal, 2003, 17(11): 1650-1658 doi: 10.1007/BF02983594
    [64] Niederberger D, Fleming A, Moheimani SOR, et al. Adaptive multi-mode resonant piezoelectric shunt damping. Smart Materials and Structures, 2004, 13(5): 1025-1035 doi: 10.1088/0964-1726/13/5/007
    [65] Gripp JAB, Góes L, Heuss O, et al. An adaptive piezoelectric vibration absorber enhanced by a negative capacitance applied to a shell structure. Smart Materials and Structures, 2015, 24(12): 125017 doi: 10.1088/0964-1726/24/12/125017
    [66] Clark WW. Vibration control with state-switched piezoelectric materials. Journal of Intelligent Material Systems and Structures, 2000, 11(4): 263-271 doi: 10.1106/18CE-77K4-DYMG-RKBB
    [67] Richard C, Guyomar D, Audigier D, et al. Semi-passive damping using continuous switching of a piezoelectric device. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3672: 104-111
    [68] Neubauer M, Han X, Schwarzendahl SM. Enhanced switching law for synchronized switch damping on inductor with bimodal excitation. Journal of Sound and Vibration, 2011, 330(12): 2707-2720 doi: 10.1016/j.jsv.2011.01.003
    [69] Lin QR, Ermanni P. Semi-active damping of a clamped plate using PZT. International Journal of Solids and Structures, 2004, 41(7): 1741-1752 doi: 10.1016/j.ijsolstr.2003.11.023
    [70] Lefeuvre E, Badel A, Petit L, et al. Semi-passive piezoelectric structural damping by synchronized switching on voltage sources. Journal of Intelligent Material Systems and Structures, 2006, 17(8-9): 653-660 doi: 10.1177/1045389X06055810
    [71] Yan B, Wang K, Hu Z, et al. Shunt damping vibration control technology: a review. Applied Sciences, 2017, 7(5): 494 doi: 10.3390/app7050494
    [72] 张胜. 基于同步开关阻尼技术的噪声半主动控制. [硕士论文]. 南京: 南京航空航天大学, 2016: 20

    (Zhang Sheng. A study on semi-active noise control by using synchronized switch damping method. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 20 (in Chinese))
    [73] Wilm M, Ballandras S, Laude V, et al. A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures. Journal of the Acoustical Society of America, 2002, 112(3): 943-952 doi: 10.1121/1.1496081
    [74] Wilm M, Khelif A, Ballandras S, et al. Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials. Physical Review E, 2003, 67(6): 065602 doi: 10.1103/PhysRevE.67.065602
    [75] Hou ZL, Wu FG, Liu YY. Phononic crystals containing piezoelectric material. Solid State Communications, 2004, 130: 745-749 doi: 10.1016/j.ssc.2004.03.052
    [76] Laude V, Wilm M, Benchabane S, et al. Full band gap for surface acoustic waves in a piezoelectric phononic crystal. Physical Review E, 2005, 71(3): 036607 doi: 10.1103/PhysRevE.71.036607
    [77] Wu TT, Hsu ZC, Huang ZG. Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal. Physical Review B, 2005, 71(6): 064303
    [78] Hsu JC, Wu TT. Bleustein-Gulyaev-Shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(6): 1169-1176 doi: 10.1109/TUFFC.2006.1642515
    [79] Wang YZ, Li FM, Kishimoto K, et al. Wave localization in randomly disordered periodic piezoelectric rods with initial stress. Acta Mechanica Solida Sinica, 2008, 21(6): 529-535 doi: 10.1007/s10338-008-0863-9
    [80] Li FM, Wang YS. Study on wave localization in disordered periodic layered piezoelectric composite structures. International Journal of Solids and Structures, 2005, 42(24): 6457-6474
    [81] Li FM, Wang YZ, Fang B, et al. Propagation and localization of two-dimensional in-plane elastic waves in randomly disordered layered piezoelectric phononic crystals. International Journal of Solids and Structures, 2007, 44(22): 7444-7456
    [82] Wang YZ, Li FM, Huang WH, et al. The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1578-1590 doi: 10.1016/j.jmps.2007.07.014
    [83] Wang YZ, Li FM, Huang WH, et al. Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals. International Journal of Solids and Structures, 2008, 45(14-15): 4203-4210 doi: 10.1016/j.ijsolstr.2008.03.001
    [84] Wang YZ, Li FM, Wang YS, et al. Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice. Acta Mechanica Sinica, 2009, 25(1): 65-71 doi: 10.1007/s10409-008-0191-9
    [85] Wang YZ, Li FM, Kishimoto K, et al. Wave band gaps in three-dimensional periodic piezoelectric structures. Mechanics Research Communications, 2009, 36(4): 461-468 doi: 10.1016/j.mechrescom.2009.01.003
    [86] Wang YZ, Li FM, Huang WH, et al. Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. Journal of Physics Condensed Matter, 2007, 19(49): 496204 doi: 10.1088/0953-8984/19/49/496204
    [87] Zou XY, Chen Q, Liang B, et al. Control of the elastic wave bandgaps in two-dimensional piezoelectric periodic structures. Smart Materials and Structures, 2008, 17: 015008 doi: 10.1088/0964-1726/17/01/015008
    [88] Airoldi L, Ruzzene M. Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New Journal of Physics, 2011, 13(11): 113010 doi: 10.1088/1367-2630/13/11/113010
    [89] Wang YZ, Zhang CZ, Chen WQ, et al. Precise and target-oriented control of the low-frequency Lamb wave bandgaps. Journal of Sound and Vibration, 2021, 511: 116367 doi: 10.1016/j.jsv.2021.116367
    [90] Ponge MF, Dubus B, Granger C, et al. Theoretical and experimental analyses of tunable fabry-perot resonators using piezoelectric phononic crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(6): 1114-1121 doi: 10.1109/TUFFC.2014.006919
    [91] Hou Z, Assouar BM. Tunable solid acoustic metamaterial with negative elastic modulus. Applied Physics Letters, 2015, 106(25): 251901 doi: 10.1063/1.4922873
    [92] Lian ZY, Jiang S, Hu HP, et al. An enhanced plane wave expansion method to solve piezoelectric phononic crystal with resonant shunting circuits. Shock and Vibration, 2016, 2016(22): 1-12
    [93] Wang YZ, Li FM, Kishimoto K, et al. Elastic wave band gaps in magnetoelectroelastic phononic crystals. Wave Motion, 2009, 46: 47-56 doi: 10.1016/j.wavemoti.2008.08.001
    [94] Miranda Jr EJP, Dos Santos JMC. Elastic wave band gaps in a two-dimensional magnetoelectroelastic phononic crystal. Revista Interdisciplinar de Pesquisa em Engenharia, 2016, 2(13): 13-26
    [95] Bao HY, Wang YZ, Wang YS. Elastic wave cloak and invisibility of piezoelectric/piezomagnetic mechanical metamaterials. Journal of the Acoustical Society of America, 2020, 148: 3722-3736 doi: 10.1121/10.0002777
    [96] Lan M, Wei PJ. Laminated piezoelectric phononic crystal with imperfect interfaces. Journal of Applied Physics, 2012, 111(1): 013505 doi: 10.1063/1.3672404
    [97] Zheng Y, Wu Z, Zhang XN, et al. A piezo-metastructure with bistable circuit shunts for adaptive nonreciprocal wave transmission. Smart Materials and Structures, 2019, 28: 045005 doi: 10.1088/1361-665X/ab083c
    [98] Croënne C, Vasseur JO, Matar OB, et al. Brillouin scattering-like effect and non-reciprocal propagation of elastic waves due to spatio-temporal modulation of electrical boundary conditions in piezoelectric media. Applied Physics Letters, 2017, 110(6): 061901 doi: 10.1063/1.4975680
    [99] Oh JH, Lee IK, Ma PS, et al. Active wave-guiding of piezoelectric phononic crystals. Applied Physics Letters, 2011, 99(8): 083505 doi: 10.1063/1.3630231
    [100] Sugino C, Ruzzene M, Erturk A. An analytical framework for locally resonant piezoelectric metamaterial plates. International Journal of Solids and Structures, 2020, 182: 281-294
    [101] Qian DH. Electro-mechanical coupling wave propagating in a locally resonant piezoelectric/elastic phononic crystal nanobeam with surface effects. Applied Mathematical and Mechanics, 2020, 41(3): 425-438 doi: 10.1007/s10483-020-2586-5
    [102] Pang Y, Jiao FY, Liu JX. Propagation behavior of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with line defects. Acta Mechanica Sinica, 2014, 30(5): 703-713 doi: 10.1007/s10409-014-0051-8
    [103] Shi J, Akbarzadeh AH. 3D hierarchical lattice ferroelectric metamaterials. International Journal of Engineering Science, 2020, 149: 103247 doi: 10.1016/j.ijengsci.2020.103247
    [104] Wei CP, Xue CX. Bending waves of a rectangular piezoelectric laminated beam. Acta Mechanica Sinica, 2020, 36(5): 1099-1108 doi: 10.1007/s10409-020-00977-w
    [105] Zhou WJ, Wu B, Chen ZY, et al. Actively controllable topological phase transition in homogeneous piezoelectric rod system. Journal of the Mechanics and Physics of Solids, 2020, 137: 103824 doi: 10.1016/j.jmps.2019.103824
    [106] Vatanabe SL, Paulino GH, Silva ECN. Maximizing phononic band gaps in piezocomposite materials by means of topology optimization. Journal of the Acoustical Society of America, 2014, 136(2): 494-501 doi: 10.1121/1.4887456
    [107] Shmuel G. Electrostatically tunable band gaps in finitely extensible dielectric elastomer fiber composites. International Journal of Solids and Structures, 2013, 50: 680-686 doi: 10.1016/j.ijsolstr.2012.10.028
    [108] Getz R, Shmuel G. Band gap tunability in deformable dielectric composite plates. International Journal of Solids and Structures, 2017, 128: 11-22 doi: 10.1016/j.ijsolstr.2017.07.021
    [109] Zhu J, Chen HY, Wu B, et al. Tunable band gaps and transmission behavior of SH waves with oblique incident angle in periodic dielectric elastomer laminates. International Journal of Mechanical Sciences, 2018, 146-147: 81-90 doi: 10.1016/j.ijmecsci.2018.07.038
    [110] Chen YJ, Wu B, Su YP, et al. Effects of strain stiffening and electrostriction on tunable elastic waves in compressible dielectric elastomer laminates. International Journal of Mechanical Sciences, 2020, 176: 105572 doi: 10.1016/j.ijmecsci.2020.105572
    [111] Wu B, Su YP, Bao RH, et al. Tuning elastic waves in soft phononic crystal cylinders via large deformation and electromechanical coupling. Journal of Applied Mechanics, 2018, 85(3): 031004 doi: 10.1115/1.4038770
    [112] Bailey T, Hubbard JE. Distributed piezoelectric-polymer active vibration control of a cantilever beam. Journal of Guidance, Control and Dynamics, 1985, 8(5): 605-611 doi: 10.2514/3.20029
    [113] Tzou HS. Piezoelectric Shells: Distributed Sensing and Control of Continua. Dordrecht: Kluwer, 1993
    [114] Thorp O, Ruzzene M, Baz A. Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches. Smart Materials and Structures, 2001, 10(5): 979-989 doi: 10.1088/0964-1726/10/5/314
    [115] Airoldi L, Ruzzene M. Wave propagation control in beams through periodic multi-branch shunts. Journal of Intelligent Material Systems and Structures, 2011, 22(14): 1567-1578 doi: 10.1177/1045389X11408372
    [116] Nouh MA, Aldraihem OJ, Baz A. Periodic metamaterial plates with smart tunable local resonators. Journal of Intelligent Material Systems and Structures, 2015, 27(13): 1829-1845
    [117] Zhang H, Wen J, Xiao Y, et al. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches. Journal of Sound and Vibration, 2015, 343: 104-120 doi: 10.1016/j.jsv.2015.01.019
    [118] Wang G, Chen SB. Large low-frequency vibration attenuation induced by arrays of piezoelectric patches shunted with amplifier-resonator feedback circuits. Smart Materials and Structures, 2016, 25: 015004 doi: 10.1088/0964-1726/25/1/015004
    [119] Wang G, Cheng JQ, Chen JW, et al. Multi-resonant piezoelectric shunting induced by digital controllers for subwavelength elastic wave attenuation in smart metamaterial. Smart Materials and Structures, 2017, 26: 025031 doi: 10.1088/1361-665X/aa53ea
    [120] Xu JW, Yan RQ. Exploitation of dimension-dependent behavior of piezoelectric metamaterial with LC shunt circuit. European Physical Journal – Applied Physics, 2018, 83(2): 20501 doi: 10.1051/epjap/2018180124
    [121] Sugino C, Ruzzene M, Erturk A. Design and analysis of piezoelectric metamaterial beams with synthetic impedance shunt circuits. IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2144-2155 doi: 10.1109/TMECH.2018.2863257
    [122] Chen SB. Wave propagation in acoustic metamaterials with resonantly shunted cross-shape piezos. Journal of Intelligent Material Systems and Structures, 2018, 29(13): 2744-2753 doi: 10.1177/1045389X18778367
    [123] Zhu R, Chen YY, Barnhart MV, et al. Experimental study of an adaptive elastic metamaterial controlled by electric circuits. Applied Physics Letters, 2016, 108(1): 011905 doi: 10.1063/1.4939546
    [124] Casadei F, Delpero T, Bergamini A, et al. Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. Journal of Applied Physics, 2012, 112(6): 064902 doi: 10.1063/1.4752468
    [125] Celli P, Gonella S. Tunable directivity in metamaterials with reconfigurable cell symmetry. Applied Physics Letters, 2015, 106(9): 091905 doi: 10.1063/1.4914011
    [126] Cardella D, Celli P, Gonella S. Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap. Smart Material Structures, 2016, 25(8): 085017 doi: 10.1088/0964-1726/25/8/085017
    [127] Tsakmakidis K, Boardman A, Hess O. “Trapped rainbow” storage of light in metamaterials. Nature, 2007, 450: 397-401 doi: 10.1038/nature06285
    [128] Celli P, Zhang W, Gonella S. Pathway towards programmable wave anisotropy in cellular metamaterials. Physical Review Applied, 2018, 9(1): 014014 doi: 10.1103/PhysRevApplied.9.014014
    [129] Maurini C, Dell’Isola F, Vescovo D. Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mechanical Systems and Signal Processing, 2004, 18(5): 1243-1271 doi: 10.1016/S0888-3270(03)00082-7
    [130] Baz AM. An active acoustic metamaterial with tunable effective density. Journal of Vibration and Acoustics, 2010, 132(4): 041011 doi: 10.1115/1.4000983
    [131] Akl W, Elsabbagh A, Baz AM. Acoustic metamaterials with circular sector cavities and programmable densities. Journal of the Acoustical Society of America, 2012, 132(4): 2857 doi: 10.1121/1.4744936
    [132] Baz AM. The structure of an active acoustic metamaterial with tunable effective density. New Journal of Physics, 2010, 11(12): 123010
    [133] Akl W, Baz AM. Active acoustic metamaterial with simultaneously programmable density and bulk modulus. Journal of Vibration and Acoustics, 2013, 135(3): 373
    [134] Akl W, Baz AM. Analysis and experimental demonstration of an active acoustic metamaterial cell. Journal of Applied Physics, 2012, 111(4): 044505 doi: 10.1063/1.3686210
    [135] Akl W, Baz AM. Experimental characterization of active acoustic metamaterial cell with controllable dynamic density. Journal of Applied Physics, 2012, 112(8): 084912 doi: 10.1063/1.4759327
    [136] Akl W, Baz AM. Multicell active acoustic metamaterial with programmable effective densities. Journal of Dynamic Systems Measurement and Control, 2012, 134(6): 061001 doi: 10.1115/1.4006619
    [137] Akl W, Baz AM. Stability analysis of active acoustic metamaterial with programmable bulk modulus. Smart Materials and Structures, 2011, 20(12): 125010 doi: 10.1088/0964-1726/20/12/125010
    [138] Wen JH, Shen HJ, Yu DL, et al. Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials. Physics Letters A, 2013, 377(34-36): 2199-2206 doi: 10.1016/j.physleta.2013.06.016
    [139] Xu JW, Tang J. Tunable prism based on piezoelectric metamaterial for acoustic beam steering. Applied Physics Letters, 2017, 110(18): 181902 doi: 10.1063/1.4982717
    [140] Shen HJ, Paidoussis MP, Wen JH, et al. Acoustic cloak/anti-cloak device with realizable passive/active metamaterials. Journal of Physics D Applied Physics, 2012, 45(28): 285401 doi: 10.1088/0022-3727/45/28/285401
    [141] Ning L, Wang YZ, Wang YS. Active control of elastic metamaterials consisting of symmetric double Helmholtz resonator cavities. International Journal of Mechanical Sciences, 2019, 153-154: 287-298 doi: 10.1016/j.ijmecsci.2019.02.007
    [142] 陈毅, 刘晓宁, 向平等. 五模材料及其水声调控研究. 力学进展, 2016, 46: 201609 (Chen Yi, Liu Xiaoning, Xiang Ping, et al. Pentamode material for underwater acoustic wave control. Advances in Mechanics, 2016, 46: 201609 (in Chinese)
    [143] Ning L, Wang YZ, Wang YS. Active control of a black hole or concentrator for flexural waves in an elastic metamaterial plate. Mechanics of Materials, 2020, 142: 103300 doi: 10.1016/j.mechmat.2019.103300
    [144] Ning L, Wang YZ, Wang YS. Active control cloak of the elastic wave metamaterial. International Journal of Solids and Structures, 2020, 202: 126-135 doi: 10.1016/j.ijsolstr.2020.06.009
    [145] Zhang H, Wen JH, Chen SB, et al. Flexural wave band-gaps in phononic metamaterial beam with hybrid shunting circuits. Chinese Physics B, 2015, 24(3): 036201 doi: 10.1088/1674-1056/24/3/036201
    [146] Collet M, Ouisse M, Ichchou MN, et al. Semi-active optimization of 2D wave dispersion into shunted piezo-composite systems for controlling acoustic interaction. Smart Materials and Structures, 2012, 21(9): 094002 doi: 10.1088/0964-1726/21/9/094002
    [147] Kutsenko AA, Shuvalov AL, Poncelet O, et al. Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance. Comptes Rendus Mecanique, 2015, 343(12): 680-688 doi: 10.1016/j.crme.2015.07.005
    [148] Kutsenko AA, Shuvalov AL, Poncelet O, et al. Tunable effective constants of the one-dimensional piezoelectric phononic crystal with internal connected electrodes. Journal of the Acoustical Society of America, 2015, 137(2): 606-616 doi: 10.1121/1.4906162
    [149] Chen YY, Huang GL, Sun CT. Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. Journal of Vibration and Acoustics, 2014, 136(6): 061008 doi: 10.1115/1.4028378
    [150] Chen YY, Huang GL. Active elastic metamaterials for subwavelength wave propagation control. Acta Mechanica Sinica, 2015, 31(3): 349-363 doi: 10.1007/s10409-015-0402-0
    [151] Junyi L, Balint DS. Optimal shunt parameters for maximising wave attenuation with periodic piezoelectric patches. Journal of Intelligent Material Systems and Structures, 2017, 28(1): 108-123 doi: 10.1177/1045389X16645861
    [152] Zhou WJ, Muhammad, Chen WQ, et al. Actively controllable flexural wave band gaps in beam-type acoustic metamaterials with shunted piezoelectric patches. European Journal of Mechanics-A/Solids, 2019, 77: 103807 doi: 10.1016/j.euromechsol.2019.103807
    [153] Hussein MI, Frazier MJ. Metadamping: An emergent phenomenon in dissipative metamaterials. Journal of Sound and Vibration, 2013, 332(20): 4767-4774 doi: 10.1016/j.jsv.2013.04.041
    [154] Li GH, Wang YZ, Wang YS. Active control on switchable waveguide of elastic wave metamaterials with the 3D printing technology. Scientific Reports, 2019, 9: 16226 doi: 10.1038/s41598-019-52705-5
    [155] Trainiti G, Xia YW, Marconi J, et al. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: theory and experiment. Physical Review Letters, 2019, 122(12): 124301 doi: 10.1103/PhysRevLett.122.124301
    [156] Marconi J, Riva E, Di Ronco M, et al. Experimental observation of non-reciprocal band-gaps in a space-time modulated beam using a shunted piezoelectric array. Physical Review Applied, 2020, 13: 031001 doi: 10.1103/PhysRevApplied.13.031001
    [157] Li GH, Ma TX, Wang TZ, et al. Active control on topological immunity of elastic wave metamaterials. Scientific Reports, 2020, 10(1): 9376 doi: 10.1038/s41598-020-66269-2
    [158] Hu GB, Xu JW, Tang LH, et al. Tunable metamaterial beam using negative capacitor for local resonators coupling. Journal of Intelligent Material Systems and Structures, 2020, 31(3): 389-407 doi: 10.1177/1045389X19891575
    [159] Hwang WS, Park HC. Finite element modeling of piezoelectric sensors and actuators. AIAA Journal, 1993, 31(5): 930-937 doi: 10.2514/3.11707
    [160] Chee CYK, Tong L, Steven GP. A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures. Journal of Intelligent Material Systems and Structures, 1998, 9(1): 3-19 doi: 10.1177/1045389X9800900101
    [161] He XQ, Ng TY, Sivashanker S, et al. Active control of FGM plates with integrated piezoelectric sensors and actuators. International journal of Solids and Structures, 2001, 38(9): 1641-1655 doi: 10.1016/S0020-7683(00)00050-0
    [162] Han JH, Lee I. Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms. Smart Materials and Structures, 1999, 8(2): 257 doi: 10.1088/0964-1726/8/2/012
    [163] Saravanos DA, Heyliger PR. Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators. Journal of Intelligent Material Systems and Structures, 1995, 6(3): 350-363 doi: 10.1177/1045389X9500600306
    [164] Caruso G, Galeani S, Menini L. Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators. Simulation Modelling Practice and Theory, 2003, 11(5-6): 403-419 doi: 10.1016/S1569-190X(03)00056-X
    [165] Chorsi MT, Curry EJ, Chorsi HT, et al. Piezoelectric biomaterials for sensors and actuators. Advanced Materials, 2019, 31(1): 1802084 doi: 10.1002/adma.201802084
    [166] He ZH, Wang YZ, Wang YS. Active feedback control of effective mass density and sound transmission on elastic wave metamaterials. International Journal of Mechanical Sciences, 2021, 195: 106221 doi: 10.1016/j.ijmecsci.2020.106221
    [167] Chen YY, Li XP, Nassar H, et al. A programmable metasurface for real time control of broadband elastic rays. Smart Materials and Structures, 2018, 27: 115011 doi: 10.1088/1361-665X/aae27b
    [168] Popa BI, Shinde D, Konneker A, et al. Active acoustic metamaterials reconfigurable in real time. Physical Review B, 2015, 91(22): 220303 doi: 10.1103/PhysRevB.91.220303
    [169] Ren T, Liu CC, Li FM, et al. Active tunability of band gaps for a novel elastic metamaterial plate. Acta Mechanica, 2020, 231(10): 4035-4053 doi: 10.1007/s00707-020-02728-1
    [170] Degraeve S, Granger C, Dubus B, et al. Bragg band gaps tunability in a homogeneous piezoelectric rod with periodic electrical boundary conditions. Journal of Applied Physics, 2014, 115(19): 194508 doi: 10.1063/1.4876757
    [171] Hu R, Wu J, Yang Y, et al. Tunable composite waveguide based on piezoelectric phononic crystal. AIP Advances, 2019, 9(4): 045120 doi: 10.1063/1.5084552
    [172] 张福学. 现代压电学(上). 北京: 科学出版社, 2001

    (Zhang Fuxue. Modern Piezoelectrics (Part 1). Beijing: Science Press, 2001 (in Chinese))
    [173] Liu CC, Reina C. Dynamic homogenization of resonant elastic metamaterials with space/time modulation. Computational Mechanics, 2019, 64: 147-161 doi: 10.1007/s00466-018-1662-x
    [174] Cui HC, Hensleigh R, Yao DS, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Materials, 2019, 18(3): 234-241 doi: 10.1038/s41563-018-0268-1
    [175] Srivastava A. Elastic metamaterials and dynamic homogenization: a review. International Journal of Smart and Nano Materials, 2015, 6(1): 41-60 doi: 10.1080/19475411.2015.1017779
    [176] Willis JR. Effective constitutive relations for waves in composites and metamaterials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467(2131): 1865-1879 doi: 10.1098/rspa.2010.0620
    [177] Willis JR. The construction of effective relations for waves in a composite. Comptes Rendus Mécanique, 2012, 340: 181-192
    [178] Willis JR. From statics of composites to acoustic metamaterials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2156
    [179] Meng S, Guzina BB. On the dynamic homogenization of periodic media: Willis’ approach versus two-scale paradigm. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474(2213): 20170638 doi: 10.1098/rspa.2017.0638
    [180] Muhlestein MB, Sieck CF, Alù A, et al. Reciprocity, passivity and causality in Willis materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2194): 2016060
    [181] Tol S, Degertekin FL, Erturk A. 3D-printed phononic crystal lens for elastic wave focusing and energy harvesting. Additive Manufacturing, 2019, 29: 100780 doi: 10.1016/j.addma.2019.100780
    [182] Khan KA, Al-Mansoor S, Khan SZ, et al. Piezoelectric metamaterial with negative and zero Poisson’s ratios. Journal of Engineering Mechanics, 2019, 145(12): 04019101 doi: 10.1061/(ASCE)EM.1943-7889.0001674
    [183] Yang JK, Li ZM, Xin XD, et al. Designing electromechanical metamaterial with full nonzero piezoelectric coefficients. Science Advances, 2019, 5(11): eaax1782 doi: 10.1126/sciadv.aax1782
    [184] Momeni F, Liu X, Ni J. A review of 4D printing. Materials and design, 2017, 122: 42-79 doi: 10.1016/j.matdes.2017.02.068
    [185] Naify CJ, Ikei A, Rohde CA. Locally programmable metamaterial elements using four-dimensional printing. Extreme Mechanics Letters, 2020, 36: 100654 doi: 10.1016/j.eml.2020.100654
    [186] Jain A, Prashanth KJ, Sharma AK, et al. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science, 2015, 55(7): 1589-1616
    [187] Wang YZ, Perras E, Golub M, et al. Manipulation of the guided wave propagation in multilayered phononic plates by introducing interface delaminations. European Journal of Mechanics A-solids, 2021, 88: 104266 doi: 10.1016/j.euromechsol.2021.104266
    [188] Golub M, Shpak AN. Semi-analytical hybrid approach for the simulation of layered waveguide with a partially debonded piezoelectric structure. Applied Mathematical Modelling, 2019, 65: 234-255 doi: 10.1016/j.apm.2018.08.019
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  145
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 录用日期:  2021-08-06
  • 网络出版日期:  2021-08-07
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回