EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变边界分段模型的页岩损失气量和解吸气量评价方法

曾克成 解海鹏 姜培学 周尚文 胥蕊娜

曾克成, 解海鹏, 姜培学, 周尚文, 胥蕊娜. 基于变边界分段模型的页岩损失气量和解吸气量评价方法. 力学学报, 2021, 53(8): 2168-2178 doi: 10.6052/0459-1879-21-187
引用本文: 曾克成, 解海鹏, 姜培学, 周尚文, 胥蕊娜. 基于变边界分段模型的页岩损失气量和解吸气量评价方法. 力学学报, 2021, 53(8): 2168-2178 doi: 10.6052/0459-1879-21-187
Zeng Kecheng, Xie Haipeng, Jiang Peixue, Zhou Shangwen, Xu Ruina. A novel method for evaluating shale lost gas amount and desorption gas amount based on segmented variable boundary model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2168-2178 doi: 10.6052/0459-1879-21-187
Citation: Zeng Kecheng, Xie Haipeng, Jiang Peixue, Zhou Shangwen, Xu Ruina. A novel method for evaluating shale lost gas amount and desorption gas amount based on segmented variable boundary model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2168-2178 doi: 10.6052/0459-1879-21-187

基于变边界分段模型的页岩损失气量和解吸气量评价方法

doi: 10.6052/0459-1879-21-187
基金项目: 国家重点研发计划(2016YFB06008005)和国家自然科学基金(51722602)资助项目
详细信息
    作者简介:

    胥蕊娜, 副教授, 主要研究方向: 多孔介质中传热传质. E-mail: ruinaxu@tsinghua.edu.cn

  • 中图分类号: TE155

A NOVEL METHOD FOR EVALUATING SHALE LOST GAS AMOUNT AND DESORPTION GAS AMOUNT BASED ON SEGMENTED VARIABLE BOUNDARY MODEL

  • 摘要: 储层含气量的准确评估是目前制约非常规天然气高效开发的重要因素, 直接法采用损失气估算模型结合解吸曲线估算储层含气量, 但现有损失气估算模型均基于煤层气的常压边界条件和球形颗粒假设, 如美国矿业局提出的USBM方法, 为埋藏深、柱状岩心的页岩气藏含气量的估算带来较大误差. 本文基于扩散理论, 采用时变压力边界条件和柱坐标系求解一维扩散方程获得解析解, 从而提出了新的损失气估算模型, 即变边界分段模型, 该模型能够反演出提钻和解吸两个阶段气体逸散的不同特征. 结果表明: 在提钻阶段, 环境压力不断降低, 岩心内外压差增大, 气体逸散速率加快, 从而是下凸函数; 在解吸阶段, 环境压力恒定, 岩心内压力随气体逸散而下降, 内外压差减小, 气体逸散速率减慢, 因而是上凸函数. 进一步为证明模型的准确性, 基于相似原理在实验室搭建了损失气−解吸气复原实验系统, 采用圆柱状页岩岩心复现提钻过程和解吸过程的气体逸散情况, 得到的实验结果与变边界分段模型吻合, 而已有的USBM方法不能进行准确预测, 验证了本文提出的变边界分段模型正确性. 根据川南地区Y151井现场测试数据, 采用变边界分段模型进行拟合预测, 所得结果良好, 验证了变边界分段模型的适用性.

     

  • 图  1  非常规储层含气量直接法评估过程中损失气与解吸过程示意图

    Figure  1.  Schematic diagram of the drifting process and desorption process in direct method to evaluate unconventional reservoir gas content

    图  2  页岩柱状岩心和提钻过程及解吸过程的压力边界条件

    Figure  2.  Shale cylindrical core and pressure boundary condition in drifting process and desorption process

    图  3  截取有限项求和所得损失气量与时间的关系

    Figure  3.  The relation between lost gas amount and time with finite terms

    图  4  短时间内解吸气量与时间的关系

    Figure  4.  The relation between desorption gas amount and time in short period

    图  5  长时间内解吸气量与时间的关系

    Figure  5.  The relation between desorption gas amount and time in long period

    图  6  全过程内岩心气体逸散量与时间的关系

    Figure  6.  The relation between escaped gas amount and time in the drifting and desorption process

    图  7  损失气−解吸气复原实验系统示意图

    Figure  7.  Schematic diagram of simulating lost gas-desorption gas experiment system

    图  8  损失气−解吸气复原实验的岩心样品

    Figure  8.  Core sample used in the simulating lost gas-desorption gas experiment

    图  9  降压时间为200 s条件下页岩的损失气实验验证变边界分段模型

    Figure  9.  Experimental data verified segmented variable boundary model under t0 = 200 s using shale sample

    图  10  初始压力3 MPa条件下变边界分段模型拟合结果与USBM模型拟合结果对比

    Figure  10.  The comparation between segmented variable boundary model and USBM model under initial pressure is 3 MPa

    图  11  川南Y151井常规取心段代表样品现场实验解吸曲线和变边界分段模型拟合结果

    Figure  11.  Desorption curves and the fitting results of segmented variable boundary model about conventional samples from South Sichuan Basin

  • [1] 贾爱林, 何东博, 位云生等. 未来十五年中国天然气发展趋势预测. 天然气地球科学, 2021, 32(1): 17-27 (Jia Ailin, He Dongbo, Wei Yunsheng, et al. Predictions on natural gas development trend in China for the next fifteen years. Natural Gas Geoscience, 2021, 32(1): 17-27 (in Chinese) doi: 10.11764/j.issn.1672-1926.2020.11.019
    [2] Xue HQ, Jiang PX, Xu RN, et al. Characterization of the reservoir in lower silurian and lower cambrian shale of south sichuan basin, China. Journal of Natural Gas Science and Engineering, 2016, 29: 150-159 doi: 10.1016/j.jngse.2015.12.023
    [3] Diamond WP, Schatzel SJ. Measuring the gas content: a review. International Journal of Coal Geology, 1998, 35: 311-331 doi: 10.1016/S0166-5162(97)00040-2
    [4] Bhowmik S, Dutta P. Adsorption rate characteristics of methane and CO2 in coal samples from Raniganj and Jharia coalfields of India. International Journal of Coal Geology, 2013, 113: 50-59 doi: 10.1016/j.coal.2013.02.005
    [5] Xue S, Yuan L. The use of coal cuttings from underground boreholes to determine gas content of coal with direct desorption method. International Journal of Coal Geology, 2017, 174: 1-7 doi: 10.1016/j.coal.2017.03.007
    [6] Xue S, Yuan L, Xie J, et al. Advances in gas content based on outburst control technology in Huainan, China. International Journal of Mining Science and Technology, 2014, 24: 385-389 doi: 10.1016/j.ijmst.2014.03.017
    [7] 王红岩, 周尚文, 刘德勋等. 页岩气地质评价关键实验技术的进展与展望. 天然气工业, 2020, 40(6): 1-17 (Wang Hongyan, Zhou Shangwen, Liu Dexun, et al. Progress and prospect of key experimental technologies for shale gas geological evaluation. Natural Gas Industry, 2020, 40(6): 1-17 (in Chinese)
    [8] 周尚文, 张介辉, 邹辰等. 基于保压取心的页岩含气量测试新方法. 煤炭学报, 2021: 1-12 (Zhou Shangwen, Zhang Jiehui, Zou Chen, et al. A new method for testing shale gas content based on pressure-holding coring technology. Journal of China Coal Society, 2021: 1-12 (in Chinese)
    [9] Kissell F, McCulloch CM, Elder CH. The direct method of determining methane content of coalbeds for ventilation design. Bureau of Mines RI 7767, NTIS No. PB221628, USA, 1973
    [10] Metcalfe RS, Yee D, Seidle JP, et al. Review of research efforts in coalbed methane recovery//SPE-23025-MS Asia-Pacific Conference, 1991
    [11] Airey ME. Gas emission from broken coal: An experimental and theoretical investigation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1968, 5: 475-494
    [12] Smith DM, Williams FL. Diffusion models for gas production from coals: Determination of diffusion parameters. Fuel, 1984, 63: 256-261 doi: 10.1016/0016-2361(84)90047-4
    [13] Smith DM, Williams FL. Diffusion models for gas production from coals: Application to methane content determination. Fuel, 1984, 63: 251-255 doi: 10.1016/0016-2361(84)90046-2
    [14] Smith DM, Williams FL. Diffusional effects in the recovery of methane from coalbeds. Journal of Petroleum Science and Engineering, 1984, 24: 529-535 doi: 10.2118/10821-PA
    [15] Wang L, Cheng LB, Cheng YP, et al. A new method for accurate and rapid measurement of underground coal seam gas content. Journal of Natural Gas Science and Engineering, 2015, 26: 1388-1398 doi: 10.1016/j.jngse.2015.08.020
    [16] Wang GD, Ren T, Qi QX, et al. Prediction of coalbed methane (CBM) production considering bidisperse diffusion: model development, experimental test, and numerical simulation. Energy & Fuels, 2017, 31: 5785-5797
    [17] Shi J, Durucan S. A bidisperse pore diffusion model for methane displacement desorption in coal by CO2 injection. Fuel, 2003, 82: 1219-1229 doi: 10.1016/S0016-2361(03)00010-3
    [18] 鲍云杰, 邓模, 翟常博. 煤心损失气量计算方法在页岩气中应用的适用性分析. 中国煤炭地质, 2014, 26(4): 22-24 (Bao Yunjie, Deng Mo, Zhai Changbo. Applicability analysis of coal core gas volume loss estimation method on shale gas. Coal Geology of China, 2014, 26(4): 22-24 (in Chinese) doi: 10.3969/j.issn.1674-1803.2014.04.05
    [19] Dang W, Zhang JC, Wei XL, et al. Methane adsorption rate and diffusion characteristics in marine shale samples from Yangtze platform, South China. Energies, 2017, 10(5): 626 doi: 10.3390/en10050626
    [20] Dang W, Zhang JC, Tang X, et al. Investigation of gas content of organic-rich shale: A case study from lower permian shale in southern north China basin, central China. Geoscience Frontiers, 2018, 9(2): 559-575 doi: 10.1016/j.gsf.2017.05.009
    [21] Sen PN. Time-dependent diffusion coefficient as a probe of geometry. Concepts in Magnetic Resonance Part A, 2004, 23(1): 1-21
    [22] Zhang J. Experimental study and modeling for CO2 diffusion in coals with different particle sizes: based on gas absorption (imbibition) and pore structure. Energy & Fuels, 2016, 30: 531-543
    [23] Charriere D, Pokryszka Z, Behra P. Effect of pressure and ̀temperature on diffusion of CO2 and CH4 into coal from the Lorraine basin (France). International Journal of Coal Geology, 2010, 81: 373-380 doi: 10.1016/j.coal.2009.03.007
    [24] 张金川, 刘树根, 魏晓亮等. 页岩含气量评价方法. 石油与天然气地质, 2021, 42(1): 28-40 (Zhang Jinchuan, Liu Shugen, Wei Xiaoliang, et al. Evaluation of gas content in shale. Oil &Gas Geology, 2021, 42(1): 28-40 (in Chinese)
    [25] Yue GW, Wang ZF, Xie C, et al. Time-dependent methane diffusion behavior in coal: measurement and modeling. Transport in Porous Media, 2017, 116(1): 319-333 doi: 10.1007/s11242-016-0776-x
    [26] Lu M, Pan ZJ, Connell LD, et al. A new method for the estimation of lost gas during measurement of the gas content of coal//SPE Reservoir Evaluation & Engineering, SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, Australia, Nov. 9-11, 2015
    [27] Kroos BM, van Bergan F, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 2002, 51: 69-92 doi: 10.1016/S0166-5162(02)00078-2
    [28] Staib G, Sakurovs R, Gray EM. A dispersive diffusion of gases in coals. Part I: Model development. Fuel, 2015, 143: 612-619 doi: 10.1016/j.fuel.2014.11.086
    [29] Siemons N, Wolf KHAA, Bruining J. Interpretation of carbon dioxide diffusion behavior in coals. International Journal of Coal Geology, 2007, 72: 315-324 doi: 10.1016/j.coal.2007.04.004
    [30] 苗杰, 倪小明, 曹运兴等. 低阶煤含气量修正数学模型及应用. 煤矿安全, 2017, 48(2): 153-159 (Miao Jie, Ni Xiaoming, Cao Yunxing, et al. Modified mathematical model of low rank coal gas content and its application. Safety in Coal Mines, 2017, 48(2): 153-159 (in Chinese)
    [31] Yang ZB, Qin Y, Wang ZF, et al. Desorption-diffusion model and lost gas quantity estimation of coalbed methane from coal core under drilling fluid medium. Science China, 2010, 53(4): 626-632 doi: 10.1007/s11430-010-0027-x
    [32] Meng Z, Liu J, Li G. Experimental analysis of methane adsorption-diffusion property in high-maturity organic-rich shale and high-rank coal. Natural Gas Geoscience, 2015, 26: 1499-1506
    [33] Jian X, Guan P, Zhang W. Carbon dioxide sorption and diffusion in coals: experimental investigation and modeling. Science China: Earth Science, 2012, 55: 633-643 doi: 10.1007/s11430-011-4272-4
    [34] Li JQ, Lu SF, Zhang PF, et al. Estimation of gas-in-place content in coal and shale reservoirs: A process analysis method and its preliminary application. Fuel, 2020, 259: 116266 doi: 10.1016/j.fuel.2019.116266
    [35] Li WB, Lu SF, Li JQ, et al. Geochemical modeling of carbon isotope fractionation during methane transport in tight sedimentary rocks. Chemical Geology, 2021, 566: 120033 doi: 10.1016/j.chemgeo.2020.120033
  • 加载中
图(11)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  33
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-01
  • 录用日期:  2021-07-06
  • 网络出版日期:  2021-07-06
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回