EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类新型仿生起竖结构设计及其动力学分析

钱佳伟 孙秀婷 徐鉴 方虹斌

钱佳伟, 孙秀婷, 徐鉴, 方虹斌. 一类新型仿生起竖结构设计及其动力学分析. 力学学报, 2021, 53(7): 2023-2036 doi: 10.6052/0459-1879-21-176
引用本文: 钱佳伟, 孙秀婷, 徐鉴, 方虹斌. 一类新型仿生起竖结构设计及其动力学分析. 力学学报, 2021, 53(7): 2023-2036 doi: 10.6052/0459-1879-21-176
Qian Jiawei, Sun Xiuting, Xu Jian, Fang Hongbin. Design and dynamic analysis of a novel bio-inspired erecting structure. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2023-2036 doi: 10.6052/0459-1879-21-176
Citation: Qian Jiawei, Sun Xiuting, Xu Jian, Fang Hongbin. Design and dynamic analysis of a novel bio-inspired erecting structure. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2023-2036 doi: 10.6052/0459-1879-21-176

一类新型仿生起竖结构设计及其动力学分析

doi: 10.6052/0459-1879-21-176
基金项目: 国家自然科学基金资助项目(11972254, 11932015)
详细信息
    作者简介:

    孙秀婷, 副教授, 主要研究方向: 非线性动力学. E-mail: 05mech_sunxiuting@tongji.edu.cn

  • 中图分类号: O322

DESIGN AND DYNAMIC ANALYSIS OF A NOVEL BIO-INSPIRED ERECTING STRUCTURE

  • 摘要: 由于生物能够通过丰富的运动形式完成特定的任务, 仿生设计方法受到了学者们的广泛关注. 蚯蚓在各种环境中具有出色的移动能力和适应性, 受此启发, 仿蠕虫机器人被提出并应用在搜救、医疗等领域. 然而现有的仿蠕虫机器人一般通过体节的轴向变形实现直线运动, 无法实现类似蛇类生物的起竖功能. 为了解决现有的仿蠕虫机器人无法起竖的问题, 本文提出了一种具有非线性多稳态性质的仿生柔性关节, 并在此基础上构建了多节仿生起竖结构以实现类似尺蠖、蛇等生物的起竖功能. 首先, 本文提出了一种仿生起竖关节模型, 推导了多节仿生起竖结构的总势能表达式, 从而建立了多节仿生起竖结构的动力学模型; 随后, 基于多节仿生起竖结构总势能的表达式和多元函数极值原理, 提出了实现需求起竖构型的结构参数设计准则, 利用动力学模型验证了结构参数设计准则的有效性, 并研究了需求构型的触发条件; 最后, 针对不同起竖节数的设计需求, 设计了相应节数的仿生起竖结构. 研究结果表明, 结构参数设计准则能够使得多节仿生起竖结构达到需求的仿生起竖构型, 并在需求构型处保持稳定平衡; 此外, 定义了初始激励与起竖构型的比例系数单调性变量, 并基于仿生起竖结构不同稳态的吸引盆揭示了上述变量构成的构型触发准则, 这为仿生起竖结构的构型切换提供了理论依据. 本文提出的仿生起竖结构对仿蠕虫机器人的功能拓展具有参考价值和指导意义, 也是对仿生设计理论的进一步完善.

     

  • 图  1  仿生起竖结构模型图: (a) 仿生起竖结构; (b) 仿生柔性关节(变形后); (c) 仿生柔性关节(变形前)

    Figure  1.  (a) Bio-inspired erecting structure; (b) bio-inspired flexible joint (after deformation); (c) bio-inspired flexible joint (before deformation)

    图  2  仿生柔性关节的几何尺寸和偏转角

    Figure  2.  Geometric parameters and deformation of the bio-inspired flexible joint

    图  3  不同结构参数下仿生起竖结构的势能−角位移关系

    Figure  3.  Potential energy for different structural parameters

    图  4  势能−角位移曲线和构型稳定性示意图

    Figure  4.  Potential energy and corresponding configuration stability schematic diagram

    图  5  两节仿生起竖结构

    Figure  5.  Two-segment bio-inspired erecting structure

    图  6  不同起竖构型的三节仿生起竖结构的起竖构型示意图及其动力学验证

    Figure  6.  Erecting configuration schematic diagram and dynamics verification of different three-segment bio-inspired erecting structure

    图  7  表1参数下仿生起竖结构稳定构型示意图

    Figure  7.  Stable configuration of three-segment bio-inspired erecting structure with parameters in Table 1

    图  8  不同单调性变量情况下三节仿生起竖结构不同稳态的吸引盆

    Figure  8.  Basin of attraction corresponding to different conditions

    图  9  三节仿生起竖结构比例系数单调性变量与起竖构型单调性变量示意图及不同比例系数情况下不同稳态的吸引盆

    Figure  9.  Schematic diagram of excitation variable and configuration variable and basin of attraction under different excitation variable situation for three-segment bio-inspired erecting structure

    图  10  多节仿生起竖结构

    Figure  10.  Multi-segment bio-inspired erecting structure

    图  11  多节仿生起竖结构稳定构型示意图

    Figure  11.  Stable configurations of multi-layer bio-inspired erecting structure

    图  12  不同比例系数单调性下多节仿生起竖结构不同稳态的吸引盆

    Figure  12.  Basin of attractions corresponding to different conditions

    表  1  S形构型设计参数

    Table  1.   Design parameters values of three-segment bio-inspired erecting structure with S configuration

    iki/(N·m·rad−1)Ksi/(N·m−1)${\phi _i}$/rad$\;{\bar \beta _i}$/rad
    126000.0500.673
    20.54000.1941.336
    30.54000.0481.256
    下载: 导出CSV

    表  2  C形构型设计参数

    Table  2.   Design parameters values of three-segment bio-inspired erecting structure with C configuration

    iki/(N·m·rad−1)Ksi/(N·m−1)${\phi _i}$/rad$\;{\bar \beta _i}$/rad
    1410000.0500.552
    20.54000.1941.372
    30.54000.0481.320
    下载: 导出CSV

    表  3  多节仿生起竖结构的设计参数

    Table  3.   Design parameters values of multi-segment bio-inspired erecting structure

    iki/(N·m·rad−1)Ksi/(N·m−1)${\phi _i}$/rad${\bar \beta _i}$/rad
    126000.0330.829
    21.54000.0310.814
    314000.0291.012
    40.54000.0331.307
    50.54000.1471.285
    60.54000.0371.289
    下载: 导出CSV
  • [1] Zhan X, Fang HB, Xu J, et al. Planar locomotion of earthworm-like metameric robots. The International Journal of Robotics Research, 2019, 38(14): 1751-1774 doi: 10.1177/0278364919881687
    [2] Fang HB, Zhang YT, Wang KW. Origami-based earthworm-like locomotion robots. Bioinspiration & Biomimetics, 2017, 12(6): 17
    [3] Luo Y, Zhao N, Wang H, et al. Design, modeling and experimental validation of a scissor mechanisms enabled compliant modular earthworm-like robot//Bicchi A, Okamura A. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017: 2421-2426
    [4] Pfeil S, Henke M, Katzer K, et al. A worm-like biomimetic crawling robot based on cylindrical dielectric elastomer actuators. Frontiers in Robotics and AI, 2020, doi: 10.3389/frobt.2020.00009
    [5] Zhan X, Xu J, Fang HB. Planar locomotion of a vibration-driven system with two internal masses. Applied Mathematical Modelling, 2016, 40(2): 871-85 doi: 10.1016/j.apm.2015.06.016
    [6] Bolotnik NN, Zeidis IM, Zimmermann K, et al. Dynamics of controlled motion of vibration-driven systems. Journal of Computer and Systems Sciences International, 2006, 45(5): 831-40 doi: 10.1134/S1064230706050145
    [7] Liu Y, Pavlovskaia E, Hendry D, et al. Vibro-impact responses of capsule system with various friction models. International Journal of Mechanical Sciences, 2013, 72: 39-54 doi: 10.1016/j.ijmecsci.2013.03.009
    [8] 陈祺, 占雄, 徐鉴. 振动驱动移动机器人直线运动的滑移分岔. 力学学报, 2016, 48(4): 792-803 (Chen Qi, Zhan Xiong, Xu Jian. Sliding bifurcations of rectilinear motion of a three-phase vibration-driven system subject to coulomb dry friction. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 792-803 (in Chinese) doi: 10.6052/0459-1879-16-157
    [9] Zimmermann K, Zeidis I, Bolotnik N, et al. Dynamics of a two-module vibration-driven system moving along a rough horizontal plane. Multibody System Dynamics, 2009, 22(2): 199-219 doi: 10.1007/s11044-009-9158-2
    [10] 付晓东, 陈力. 全柔性空间机器人运动振动一体化输入受限重复学习控制. 力学学报, 2020, 52(1): 171-183 (Fu Xiaodong, Chen Li. An input limited repetitive learning control of flexible-base two-flexible-link and two-flexible-joint space robot with integration of motion and vibration. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 171-183 (in Chinese) doi: 10.6052/0459-1879-19-289
    [11] 艾海平, 陈力. 基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制. 力学学报, 2020, 52(4): 975-984 (Ai Haiping, Chen Li. Buffer and compliant dynamic surface control of space robot capturing satellite based on compliant mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 975-984 (in Chinese) doi: 10.6052/0459-1879-20-068
    [12] 方五益, 郭晛, 黎亮等. 柔性铰柔性杆机器人动力学建模、仿真和控制. 力学学报, 2020, 52(4): 965-974 (Fang Wuyi, Guo Xian, Li Liang, et al. Dynamics modeling simulation, and control of robots with flexible joints and flexible links. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 965-974 (in Chinese) doi: 10.6052/0459-1879-20-067
    [13] Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus. Advanced Robotics, 2012, 26(7): 709-727 doi: 10.1163/156855312X626343
    [14] Laschi C, Mazzolai B, Mattoli V, et al. Design of a biomimetic robotic octopus arm. Bioinspiration & Biomimetics, 2009, 4(1): 8
    [15] Xie ZX, Domel AG, An N, et al. Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Robotics, 2020, 7(5): 639-648 doi: 10.1089/soro.2019.0082
    [16] Chiri A, Vitiello N, Giovacchini F, et al. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE-ASME Transactions on Mechatronics, 2012, 17(5): 884-894 doi: 10.1109/TMECH.2011.2144614
    [17] Chen XS, Gong L, Wei L, et al. A wearable hand rehabilitation system with soft gloves. IEEE Transactions on Industrial Informatics, 2021, 17(2): 943-952 doi: 10.1109/TII.2020.3010369
    [18] Liow L, Clark AB, Rojas N. Olympic: A modular, tendon-driven prosthetic hand with novel finger and wrist coupling mechanisms. IEEE Robotics and Automation Letters, 2020, 5(2): 299-306 doi: 10.1109/LRA.2019.2956636
    [19] Zareei A, Deng BL, Bertoldi K. Harnessing transition waves to realize deployable structures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(8): 4015 doi: 10.1073/pnas.1917887117
    [20] Haghpanah B, Salari-Sharif L, Pourrajab P, et al. Multistable shape-reconfigurable architected materials. Advanced Materials, 2016, 28(36): 7915-7920 doi: 10.1002/adma.201601650
    [21] Rafsanjani A, Pasini D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mechanics Letters, 2016, 9: 291-296 doi: 10.1016/j.eml.2016.09.001
    [22] Forterre Y, Skotheim JM, Dumais J, et al. How the Venus flytrap snaps. Nature, 2005, 433(7024): 421-425 doi: 10.1038/nature03185
    [23] Markin VS, Volkov AG, Jovanov E. Active movements in plants. Plant Signaling & Behavior, 2008, 3(10): 778-783
    [24] Zhang Z, Li XH, Yu XC, et al. Magnetic actuation bionic robotic gripper with bistable morphing structure. Composite Structures, 2019, 229: 111422 doi: 10.1016/j.compstruct.2019.111422
    [25] Zhang Z, Chen DD, Wu HP, et al. Non-contact magnetic driving bioinspired Venus flytrap robot based on bistable anti-symmetric CFRP structure. Composite Structures, 2016, 135: 17-22 doi: 10.1016/j.compstruct.2015.09.015
    [26] Kim SW, Koh JS, Lee JG, et al. Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface. Bioinspiration & Biomimetics, 2014, 9(3): 14
    [27] Wang X, Khara A, Chen C. A soft pneumatic bistable reinforced actuator bioinspired by Venus Flytrap with enhanced grasping capability. Bioinspiration & Biomimetics, 2020, 15(5): 15
    [28] Li SY, Wang KW. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation. Journal of the Royal Society Interface, 2015, 12(111): 11
    [29] Lachenal X, Weaver PM, Daynes S. Multi-stable composite twisting structure for morphing applications. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2012, 468(2141): 1230-1251 doi: 10.1098/rspa.2011.0631
    [30] Zirbel SA, Lang RJ, Thomson MW, et al. Accommodating thickness in origami-based deployable arrays. Journal of Mechanical Design, 2013, 135(11): 11
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  65
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-27
  • 录用日期:  2021-06-27
  • 网络出版日期:  2021-06-27
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回