EI、Scopus 收录
中文核心期刊
钱佳伟, 孙秀婷, 徐鉴, 方虹斌. 一类新型仿生起竖结构设计及其动力学分析. 力学学报, 2021, 53(7): 2023-2036. DOI: 10.6052/0459-1879-21-176
引用本文: 钱佳伟, 孙秀婷, 徐鉴, 方虹斌. 一类新型仿生起竖结构设计及其动力学分析. 力学学报, 2021, 53(7): 2023-2036. DOI: 10.6052/0459-1879-21-176
Qian Jiawei, Sun Xiuting, Xu Jian, Fang Hongbin. Design and dynamic analysis of a novel bio-inspired erecting structure. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2023-2036. DOI: 10.6052/0459-1879-21-176
Citation: Qian Jiawei, Sun Xiuting, Xu Jian, Fang Hongbin. Design and dynamic analysis of a novel bio-inspired erecting structure. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2023-2036. DOI: 10.6052/0459-1879-21-176

一类新型仿生起竖结构设计及其动力学分析

DESIGN AND DYNAMIC ANALYSIS OF A NOVEL BIO-INSPIRED ERECTING STRUCTURE

  • 摘要: 由于生物能够通过丰富的运动形式完成特定的任务, 仿生设计方法受到了学者们的广泛关注. 蚯蚓在各种环境中具有出色的移动能力和适应性, 受此启发, 仿蠕虫机器人被提出并应用在搜救、医疗等领域. 然而现有的仿蠕虫机器人一般通过体节的轴向变形实现直线运动, 无法实现类似蛇类生物的起竖功能. 为了解决现有的仿蠕虫机器人无法起竖的问题, 本文提出了一种具有非线性多稳态性质的仿生柔性关节, 并在此基础上构建了多节仿生起竖结构以实现类似尺蠖、蛇等生物的起竖功能. 首先, 本文提出了一种仿生起竖关节模型, 推导了多节仿生起竖结构的总势能表达式, 从而建立了多节仿生起竖结构的动力学模型; 随后, 基于多节仿生起竖结构总势能的表达式和多元函数极值原理, 提出了实现需求起竖构型的结构参数设计准则, 利用动力学模型验证了结构参数设计准则的有效性, 并研究了需求构型的触发条件; 最后, 针对不同起竖节数的设计需求, 设计了相应节数的仿生起竖结构. 研究结果表明, 结构参数设计准则能够使得多节仿生起竖结构达到需求的仿生起竖构型, 并在需求构型处保持稳定平衡; 此外, 定义了初始激励与起竖构型的比例系数单调性变量, 并基于仿生起竖结构不同稳态的吸引盆揭示了上述变量构成的构型触发准则, 这为仿生起竖结构的构型切换提供了理论依据. 本文提出的仿生起竖结构对仿蠕虫机器人的功能拓展具有参考价值和指导意义, 也是对仿生设计理论的进一步完善.

     

    Abstract: Since organisms can accomplish specific tasks through various motion forms, bionic design methods have been received extensive attention from scholars. Inspired by the fact that earthworms have excellent mobility and adaptability in a variety of environments, earthworm-like robots have been proposed and applied in search and rescue, medical treatment and other fields. However, existing earthworm-like robots generally realize rectilinear motion through axial deformation of its body segments, which cannot be applied to realize the erecting function of snake organisms. In order to solve the problem that existing earthworm-like robot cannot erect, a bio-inspired flexible joint with nonlinear multi-stable property is proposed. Based on the proposed bio-inspired flexible joint, a multi-segment bio-inspired erecting structure is built to realize the erecting function of inchworms, snakes and other organisms. First, the model of the bio-inspired erecting joint is proposed. The potential energy of multi-segment bio-inspired erecting structure is obtained, and the dynamic model of the multi-segment bio-inspired erecting structure is established. Then, based on the potential energy and extremum principle, the structural design criteria is proposed to realize required erecting configuration. The effectiveness of structural design criteria is verified and the condition to trigger required configuration is studied by using the dynamic model. Finally, according to different design requirement for the number of erecting segments, corresponding bio-inspired erecting structure is designed. The results show that the design criteria of structural parameters can make the multi-segment bio-inspired erecting structure reach the required erecting configuration and maintain stable at the required erecting configuration. Besides, based on the basin of attraction of different stable configurations, the configuration triggering criteria of the bio-inspired erecting structure is studied, and the configuration triggering criteria composed of the excitation variables and configuration variables is revealed, which provide a theoretical basis for configuration switching of the bio-inspired erecting structure. The bio-inspired erecting structure proposed in this paper provide guidelines for function expansion of the earthworm-like robot. It is also a further improvement of the bionic design theory.

     

/

返回文章
返回