EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

闭孔泡沫铝泊松比及三轴压缩变形模式

贾然 赵桂平

贾然, 赵桂平. 闭孔泡沫铝泊松比及三轴压缩变形模式. 力学学报, 2021, 53(8): 2289-2297 doi: 10.6052/0459-1879-21-173
引用本文: 贾然, 赵桂平. 闭孔泡沫铝泊松比及三轴压缩变形模式. 力学学报, 2021, 53(8): 2289-2297 doi: 10.6052/0459-1879-21-173
Jia Ran, Zhao Guiping. Poisson’s ratio and triaxial compression deformation pattern of closed-cell aluminum foam. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2289-2297 doi: 10.6052/0459-1879-21-173
Citation: Jia Ran, Zhao Guiping. Poisson’s ratio and triaxial compression deformation pattern of closed-cell aluminum foam. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2289-2297 doi: 10.6052/0459-1879-21-173

闭孔泡沫铝泊松比及三轴压缩变形模式

doi: 10.6052/0459-1879-21-173
基金项目: 国家自然科学基金资助项目(11772247)
详细信息
    作者简介:

    赵桂平, 教授, 主要研究方向: 泡沫铝本构模型. E-mail: zhaogp@mail.xjtu.edu.cn

  • 中图分类号: O34

POISSON’S RATIO AND TRIAXIAL COMPRESSION DEFORMATION PATTERN OF CLOSED-CELL ALUMINUM FOAM

  • 摘要: 在闭孔泡沫铝的唯象本构模型中, 泊松比是一个非常关键的参数, 为了探究闭孔泡沫铝泊松比变化规律研究结果存在分歧的原因, 认识闭孔泡沫铝泊松比变化规律中特征点的物理意义, 采用数值模拟方法, 建立了闭孔泡沫铝的3D-Voronoi模型及2D-Voronoi模型, 对模型进行侧面位移耦合单轴压缩边界条件下的仿真分析; 基于闭孔泡沫铝本构模型的唯象特性, 对闭孔泡沫铝变形模式的研究同样十分重要, 为明确其三轴压缩下的变形模式, 对闭孔泡沫铝的3D-Voronoi模型进行侧面位移受限轴向压缩边界条件下的仿真分析. 研究结果表明, 常规壳单元接触中的厚度减薄特性是闭孔泡沫铝泊松比变化规律的研究结论存在分歧的原因, 但厚度减薄不影响泡沫铝模型致密前胞孔结构的变形模式; 闭孔泡沫铝泊松比的准确变化规律为“增高−降低−再增高”的“S”型曲线, 并且, 曲线极大值对应闭孔泡沫铝吸能效率的增速下降点; 等比压缩应力状态下, 闭孔泡沫铝存在四种侧面变形模式, 分别为“(短期)压缩变形→膨胀变形”、“压缩变形→膨胀变形→压缩变形→膨胀变形”、“压缩变形→(短期)膨胀变形”及“压缩变形”.

     

  • 图  1  3D-Voronoi几何模型

    Figure  1.  3D-Voronoi geometrical model

    图  2  2D-Voronoi几何模型

    Figure  2.  2D-Voronoi geometrical model

    图  3  3D-Voronoi模型侧面位移耦合单轴压缩示意图

    Figure  3.  Lateral displacement coupled uniaxial compression of 3D-Voronoi model

    图  4  2D-Voronoi模型侧面位移耦合单轴压缩示意图

    Figure  4.  Lateral displacement coupled uniaxial compression of 2D-Voronoi model

    图  5  3D-Voronoi模型侧面位移受限轴向压缩示意图

    Figure  5.  Lateral displacement limited axial compression of 3D-Voronoi model

    图  6  2D-Voronoi模型致密起始应变邻域内泊松比曲线

    Figure  6.  Poisson’s ratio curves in neighborhood of onset of densification of 2D-Voronoi model

    图  7  2D-Voronoi模型胞孔结构变形图

    Figure  7.  Cellular structure deformation of 2D-Voronoi model

    图  8  3D-Voronoi模型泊松比及吸能效率曲线

    Figure  8.  Curves of Poisson’s ratio and energy absorption efficiency of 3D-Voronoi model

    图  9  3D-Voronoi模型吸能效率增速曲线

    Figure  9.  Growth rate of energy absorption efficiency of 3D-Voronoi model

    图  10  临界应力路径及吸能效率曲线

    Figure  10.  Curves of critical stress path and energy absorption efficiency

  • [1] Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. Oxford: Pergamon Press, 1997
    [2] Alvarez P, Mendizabal A, Petite MM, et al. Finite element modelling of compressive mechanical behaviour of high and low density polymeric foams. Materialwissenschaft Und Werkstofftechnik, 2009, 40(3): 126-132 doi: 10.1002/mawe.200900417
    [3] 范志庚, 陈常青, 万强. 泡沫铝率相关性能的有限元模拟. 爆炸与冲击, 2014, 34(6): 742-747 (Fan Zhigeng, Chen Changqing, Wan Qiang. Finite element simulation on the rate-dependent properties of aluminum foams. Explosion and Shock Waves, 2014, 34(6): 742-747 (in Chinese) doi: 10.11883/1001-1455(2014)06-0742-06
    [4] Tang L, Shi X, Zhang L, et al. Effects of statistics of cell’s size and shape irregularity on mechanical properties of 2D and 3D Voronoi foams. Acta Mechanica, 2014, 225(4-5): 1361-1372 doi: 10.1007/s00707-013-1054-4
    [5] 宋延泽, 李志强, 赵隆茂. 基于十四面体模型的闭孔泡沫材料动态力学性能的有限元分析. 爆炸与冲击, 2009, 29(1): 49-55 (Song Yanze, Li Zhiqiang, Zhao Longmao. Finite element analysis of dynamic crushing behaviors of closed-cell foams based on a tetrakaidecahedron model. Explosion and Shock Waves, 2009, 29(1): 49-55 (in Chinese) doi: 10.3321/j.issn:1001-1455.2009.01.010
    [6] 张健, 赵桂平, 卢天健. 闭孔泡沫铝的多轴唯象受压本构参数. 力学学报, 2015, 47(4): 651-663 (Zhang Jian, Zhao Guiping, Lu Tianjian. Multiaxial phenomenological compressible constitutive parameters for closed-cell aluminum foams. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 651-663 (in Chinese) doi: 10.6052/0459-1879-15-086
    [7] 贾然, 赵桂平. 泡沫铝本构行为研究进展. 力学学报, 2020, 52(3): 603-622 (Jia Ran, Zhao Guiping. Progress in constitutive behavior of aluminum foam. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 603-622 (in Chinese)
    [8] 张晓阳. 多轴条件下基于细观结构模型的泡沫金属屈服与破坏行为研究. [博士论文]. 广州: 华南理工大学, 2016

    (Zhang Xiaoyang. Study on the yield and failure behaviors of metal foam under multi-axial loading based on meso-structure models. [PhD Thesis]. Guangzhou: South China University of Technology, 2016 (in Chinese))
    [9] Wu Y, Dan Q, Tang L, et al. Global topology of failure surfaces of metallic foams in principal-stress space and principal-strain space studied by numerical simulations. International Journal of Mechanical Sciences, 2019, 151: 551-562 doi: 10.1016/j.ijmecsci.2018.12.003
    [10] 吴奕东. 泡沫金属的初始屈服面和破坏面在主应力空间和主应变空间中的表征. [博士论文]. 广州: 华南理工大学, 2019

    (Wu Yidong. Characterizations of initial yield surface and failure surface of metallic foams in the principal-stress space and the principal-strain space. [PhD Thesis]. Guangzhou: South China University of Technology, 2019 (in Chinese))
    [11] 张越. 泡沫铝合金尺寸效应及屈服行为研究. [博士论文]. 太原: 太原理工大学, 2019

    (Zhang Yue. Size effect and yield behavior of aluminum alloy foams. [PhD Thesis]. Taiyuan: Taiyuan University of Technology, 2019 (in Chinese))
    [12] 朱长峰. 复杂应力状态/动态压缩下的泡沫金属本构模型. [博士论文]. 合肥: 中国科学技术大学, 2019

    (Zhu Changfeng. Constitutive model of metal foam under comples stress/dynamic compression. [PhD Thesis]. Hefei: University of Science and Technology of China, 2019 (in Chinese))
    [13] 郭亚周, 杨海, 刘小川等. 闭孔泡沫铝在动态加载下的压缩力学行为研究. 振动工程学报, 2020, 33(2): 338-346 (Guo Yazhou, Yang Hai, Liu Xiaochuan, et al. Compressive mechanical behavior of closed cell Aluminum foam under dynamic loading. Journal of Vibration Engineering, 2020, 33(2): 338-346 (in Chinese)
    [14] Reyes A, Hopperstad OS, Berstad T, et al. Constitutive modeling of aluminum foam including fracture and statistical variation of density. European Journal of Mechanics, 2003, 22(6): 815-835 doi: 10.1016/j.euromechsol.2003.08.001
    [15] Hanssen AG, Hopperstad OS, Langseth M, et al. Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences, 2002, 44(2): 359-406 doi: 10.1016/S0020-7403(01)00091-1
    [16] LS-DYNA Theory Manual. Livermore Software Technology Corporation, 2019
    [17] 王鹰宇. Abaqus分析用户手册: 材料卷. 北京: 机械工业出版社, 2018

    (Wang Yuying. Abaqus Analysis User’s Guide: Materials Volume. Beijing: China Machine Press, 2018 (in Chinese))
    [18] Deshpande VS, Fleck NA. Isotropic constitutive models for metallic foams. Journal of the Mechanics & Physics of Solids, 2000, 48(6): 1253-1283
    [19] Miller RE. A continuum plasticity model for the constitutive and indentation behaviour of foamed metals. International Journal of Mechanical Sciences, 2000, 42(4): 729-754 doi: 10.1016/S0020-7403(99)00021-1
    [20] Chen C, Lu TJ. A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids. International Journal of Solids and Structures, 2000, 37(52): 7769-7786 doi: 10.1016/S0020-7683(00)00003-2
    [21] Bi J. Constitutive modeling of aluminum foam and finite element implementation for crash simulations. [PhD Thesis]. Charlotte: The University of North Carolina, 2012
    [22] 张乐, 张健, 赵桂平. 闭孔泡沫铝的塑性泊松比. 固体力学学报, 2015, 36(3): 244-250 (Zhang Le, Zhang Jian, Zhao Guiping. Plastic poisson's ratio of closed-cell aluminum foams. Chinese Journal of Solid Mechanics, 2015, 36(3): 244-250 (in Chinese)
    [23] Fang H, Bi J, Zhang C, et al. A constitutive model of aluminum foam for crash simulations. International Journal of Non-Linear Mechanics, 2017, 90: 124-136 doi: 10.1016/j.ijnonlinmec.2017.01.013
    [24] 王长峰, 郑志军, 虞吉林. 泡沫金属的微惯性效应和动态塑性泊松比. 爆炸与冲击, 2014, 34(5): 601-607 (Wang Changfeng, Zheng Zhijun, Yu Jilin. Micro-inertia effect and dynamic plastic Poisson's ratio of metallic foams under compression. Explosion and Shock Waves, 2014, 34(5): 601-607 (in Chinese) doi: 10.11883/1001-1455(2014)05-0601-07
    [25] Zhu C, Zheng Z, Wang S, et al. Modification and verification of the Deshpande–Fleck foam model: A variable ellipticity. International Journal of Mechanical Sciences, 2019, 151: 331-342
    [26] Quey R, Dawson PR, Barbe F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics & Engineering, 2011, 200(17-20): 1729-1745
    [27] Andrews EW, Gioux G, Onck P, et al. Size effects in ductile cellular solids. Part II: experimental results. International Journal of Mechanical Sciences, 2001, 43(3): 701-713 doi: 10.1016/S0020-7403(00)00043-6
    [28] Li QM, Magkiriadis I, Harrigan JJ. Compressive strain at the onset of densification of cellular solids. Journal of Cellular Plastics, 2006, 42(5): 371-392 doi: 10.1177/0021955X06063519
    [29] 庄茁, 由小川, 廖剑辉等. 基于ABAQUS的有限元分析和应用. 北京: 清华大学出版社, 2009

    (Zhuang Zhuo, You Xiaochuan, Liao Jianhui, et al. Finite Element Analysis and Application Based on ABAQUS. Beijing: Tsinghua University Press, 2009 (in Chinese))
    [30] 王鹰宇. Abaqus分析用户手册: 指定条件、约束与相互作用卷. 北京: 机械工业出版社, 2019

    (Wang Yuying. Abaqus Analysis User’s Guide: Prescribed Conditions, Constraints & Interactions Volume. Beijing: China Machine Press, 2019 (in Chinese))
    [31] 王鹰宇. Abaqus分析用户手册: 分析卷. 北京: 机械工业出版社, 2017

    (Wang Yuying. Abaqus Analysis User’s Guide: Analysis Volume. Beijing: China Machine Press, 2017 (in Chinese))
  • 加载中
图(10)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  118
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 录用日期:  2021-07-28
  • 网络出版日期:  2021-07-30
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回