EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切流场中含内流立管横向涡激振动特性

段金龙 周济福 王旭 陈科

段金龙, 周济福, 王旭, 陈科. 剪切流场中含内流立管横向涡激振动特性. 力学学报, 2021, 53(7): 1814-1822 doi: 10.6052/0459-1879-21-171
引用本文: 段金龙, 周济福, 王旭, 陈科. 剪切流场中含内流立管横向涡激振动特性. 力学学报, 2021, 53(7): 1814-1822 doi: 10.6052/0459-1879-21-171
Duan Jinlong, Zhou Jifu, Wang Xu, Chen Ke. Cross-flow vortex-induced vibration of a flexible riser with internal flow in shear current. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1814-1822 doi: 10.6052/0459-1879-21-171
Citation: Duan Jinlong, Zhou Jifu, Wang Xu, Chen Ke. Cross-flow vortex-induced vibration of a flexible riser with internal flow in shear current. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1814-1822 doi: 10.6052/0459-1879-21-171

剪切流场中含内流立管横向涡激振动特性

doi: 10.6052/0459-1879-21-171
基金项目: 国家自然科学基金(11972352)和中国科学院战略性先导科技专项(XDB22040203, XDA22000000)资助项目
详细信息
    作者简介:

    周济福, 研究员, 主要研究方向: 环境流体力学和流固耦合动力学. Email: zhoujf@imech.ac.cn

  • 中图分类号: TE53

CROSS-FLOW VORTEX-INDUCED VIBRATION OF A FLEXIBLE RISER WITH INTERNAL FLOW IN SHEAR CURRENT

  • 摘要: 立管是海洋工程中输送油气或其它矿产资源的必备结构, 外部洋流引起的立管涡激振动影响着立管的疲劳寿命, 危害深海资源开发. 本文基于欧拉−伯努利梁方程, 结合半经验时域水动力模型, 建立剪切流与内流耦合作用下海洋立管涡激振动预报模型, 运用有限元方法和Newmark-β逐步积分法求解方程, 首先将数值模拟结果与实验数据进行对比, 验证模型正确性. 然后, 运用此模型, 对剪切流作用下含内流的顶张立管在不同内流速度和密度下的横向涡激振动响应特性进行研究, 主要分析了立管的横向振动模态、振动频率以及均方根位移等涡激振动参数随内流速度和密度等参数的变化规律. 结果表明, 在剪切流场中, 含内流海洋立管在横向上表现出多模态多频率的涡激振动;立管横向振动的最大均方根位移随内流速度和密度的增大而增大, 特别是当内流速度较大时, 横向最大均方根位移增大明显;立管横向振动的主导频率随内流速度和密度的增大而减小, 并且内流密度的增大同样会引起模态转换和频率转换.

     

  • 图  1  含内流立管横向涡激振动示意图

    Figure  1.  Schematic of vortex-induced vibration (VIV) for a riser considering internal flow. CF stands for cross-flow

    图  2  含内流立管横向激励区和阻尼区示意图

    Figure  2.  Identification of excitation and damping regions of a fluid-conveying riser

    图  3  横向激励力系数模型参数[34]

    Figure  3.  Excitation coefficient for CF VIV[34].

    图  4  激励力系数与无因次幅值的函数曲线

    Figure  4.  Function of excitation coefficient and non-dimensional amplitude.

    图  5  立管离散单元示意图

    Figure  5.  Schematic of discretized elements of the fluid-conveying riser.

    图  6  横向均方根位移对比

    Figure  6.  Comparison of CF RMS between numerical and experiment results

    图  7  横向振动时历曲线和振动频率

    Figure  7.  Time history of vibration and vibrating frequency in CF direction

    图  8  立管固有频率随着内流速度变化规律

    Figure  8.  Variation of natural frequency with the increase of the internal flow velocity

    图  9  立管固有频率随着内流密度变化规律

    Figure  9.  Variation of natural frequency with the increase of the internal fluid density

    图  10  横向振动频率随着内流速度的变化趋势

    Figure  10.  Variation of CF vibrating frequency with the increase of the internal flow velocity

    图  11  横向振动频率随着内流密度的变化趋势

    Figure  11.  Variation of CF vibrating frequency with the increase of the internal fluid density

    图  12  横向均方根位移随着内流速度变化趋势

    Figure  12.  Variation of CF RMS with the increase of the internal flow velocity

    图  13  横向均方根位移随着内流密度变化趋势

    Figure  13.  Variation of CF RMS with the increase of the internal fluid density

    表  1  模型实验立管参数[36]

    Table  1.   Parameters of the experimental riser model[36]

    ParameterValue
    length L/m6.75
    outer diameter De/m0.031
    inner diameter di/m0.027
    bending stiffness EI/N·m21476.76
    pretension T/N3000
    mass per unit mr/kg1.768
    damping ratio c/%0.3
    下载: 导出CSV
  • [1] Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 2004, 19: 389-447
    [2] Williamson CHK, Govardhan R. A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 713-735
    [3] Bearman PW. Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids and Structures, 2011, 27: 648-658
    [4] Chaplin JR, King R. Laboratory measurements of the vortex-induced vibrations of an untensioned catenary riser with high curvature. Journal of Fluids and Structures, 2018, 79: 26-38 doi: 10.1016/j.jfluidstructs.2018.01.008
    [5] Xu WH, Ma YX, Ji CN, et al. Laboratory measurements of vortex-induced vibrations of a yawed flexible cylinder at different yaw angles. Ocean Engineering, 2018, 154: 27-42 doi: 10.1016/j.oceaneng.2018.01.113
    [6] 高云, 邹丽, 宗智. 两端铰接的细长柔性圆柱体涡激振动响应特性数值研究. 力学学报, 2018, 50(1): 9-20 (Gao Yun, Zou Li, Zong Zhi. Numerical study of response performance of vortex-induced vibration on a flexible cylinder with pinned-pinned boundary condition. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 9-20 (in Chinese) doi: 10.6052/0459-1879-17-340
    [7] 徐万海, 马烨璇, 罗浩等. 柔性圆柱涡激振动流体力系数识别及其特性. 力学学报, 2017, 49(4): 818-827 (Xu Wanhai, Ma Yexuan, Luo Hao, et al. Identification and characteristics of hydrodynamic coefficients for a flexible cylinder undergoing vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 818-827 (in Chinese)
    [8] Chen WL, Ji CN, Xu D, et al. Flow-induced vibrations of an equilateral triangular prism at various angles of attack. Journal of Fluids and Structures, 2020, 97: 103099 doi: 10.1016/j.jfluidstructs.2020.103099
    [9] 李非凡, 及春宁, 许栋等. 细长柔性立管涡激振动的数值模拟研究. 工程力学, 2017, 34(4): 221-230 (Li Feifan, Ji Chunning, Xu Dong, et al. Numerical investigation on the vortex-induced vibration of a flexible slender riser. Engineering Mechanics, 2017, 34(4): 221-230 (in Chinese)
    [10] 及春宁, 花阳, 许栋等. 不同剪切率来流作用下柔性圆柱涡激振动数值模拟. 力学学报, 2018, 50(1): 21-31 (Ji Chunning, Hua Yang, Xu Dong, et al. Numerical simulation of vortex-induced vibration of a flexible cylinder exposed to shear flow at different shear rates. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 21-31 (in Chinese) doi: 10.6052/0459-1879-17-222
    [11] 及春宁, 邢国源, 张力等. 倾斜流作用下柔性立管涡激振动的数值模拟. 哈尔滨工程大学学报, 2018, 39(2): 324-331 (Ji Chunning, Xing Guoyuan, Zhang Li, et al. Numerical simulations of vortex-induced vibration of flexible riser subjected to inclined flow. Journal of Harbin Engineering University, 2018, 39(2): 324-331 (in Chinese)
    [12] Seyed-Aghazadeh B, Edraki M, Modarres-Sadeghi Y. Effects of boundary conditions on vortex-induced vibration of a fully submerged flexible cylinder. Experiments in Fluids, 2019, 60: 38
    [13] Song JN, Lu L, Teng B, et al. Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow. Ocean Engineering, 2011, 38: 1308-1322
    [14] Hu Z, Wang J, Sun Y. Flow-induced vibration of one-fixed-one-free tandem arrangement cylinders with different mass-damping ratios using wind tunnel experiment. Journal of Fluids and Structures, 2020, 96: 103019 doi: 10.1016/j.jfluidstructs.2020.103019
    [15] Bao Y, Zhu HB, Huan P, et al. Numerical prediction of vortex-induced vibration of flexible riser with thick strip method. Journal of Fluids and Structures, 2019, 89: 166-173 doi: 10.1016/j.jfluidstructs.2019.02.010
    [16] Qu Y, Metrikine AV. A single van der pol wake oscillator model for coupled cross-flow and in-line vortex-induced vibrations. Ocean Engineering, 2020, 196: 106732 doi: 10.1016/j.oceaneng.2019.106732
    [17] Qu Y, Metrikine AV. A wake oscillator model with nonlinear coupling for the vortex-induced vibration of a rigid cylinder constrained to vibrate in the cross-flow direction. Journal of Sound and Vibration, 2020, 469: 115161 doi: 10.1016/j.jsv.2019.115161
    [18] Yuan YC, Xue HX, Tang WY. Numerical analysis of vortex-induced vibration for flexible risers under steady and oscillatory flows. Ocean Engineering, 2018, 148: 548-562 doi: 10.1016/j.oceaneng.2017.11.047
    [19] Zhang MM, Fu SX, Song LJ, et al. A time domain prediction method for the vortex-induced vibrations of a flexible riser. Marine Structures, 2018, 59: 458-481
    [20] Lin K, Wang J. Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method. Ocean Engineering, 2019, 172: 468-486 doi: 10.1016/j.oceaneng.2018.12.006
    [21] Païdoussis MP. Fluid-structure Interactions, Slender Structures and Axial Flow. volume 1. second ed., Academic Press, California, USA, 2014.
    [22] Guo HY, Lou M. Effect on internal flow on vortex induced vibration of risers. Journal of Fluids and Structures, 2008, 24(4): 496-504 doi: 10.1016/j.jfluidstructs.2007.10.002
    [23] 李朋. 深水海洋输流立管涡激振动及干涉试验研究. [博士论文] . 青岛: 中国海洋大学, 2012

    (Li Peng. Experimental study on vortex-induced vibration and interference of deepwater marine risers transporting fluid. [PhD Thesis]. Qingdao: Ocean University of China, 2012 (in Chinese))
    [24] 吴天昊. 悬垂立管涡激振动响应特性研究. [硕士论文]. 上海: 上海交通大学, 2018

    (Wu Tianhao. The study on VIV responses of a free-hang riser. [Master Thesis]. Shanghai: Shanghai Jiao Tong University, 2018 (in Chinese))
    [25] Jiang TL, Dai HL, Wang L. Three-dimensional dynamics of fluid-conveying pipe simultaneously subjected to external axial flow. Ocean Engineering, 2020, 217: 107970 doi: 10.1016/j.oceaneng.2020.107970
    [26] Duan JL, Chen K, You YX, et al. Numerical investigation of vortex-induced vibration of a riser with internal flow. Applied Ocean Research, 2018, 72: 110-121 doi: 10.1016/j.apor.2018.01.003
    [27] Duan JL, Zhou JF, You YX, et al. Time-domain analysis of vortex-induced vibration of a flexible mining riser transporting flow with various velocities and densities. Ocean Engineering, 2021, 220: 108427 doi: 10.1016/j.oceaneng.2020.108427
    [28] Thorsen MJ, Challabotla NR, Sævik S, et al. A numerical study on vortex-induced vibrations and the effect of slurry density variations on fatigue of ocean mining risers. Ocean Engineering, 2019, 174: 1-13 doi: 10.1016/j.oceaneng.2019.01.041
    [29] Wang L, Jiang TL, Dai HL, et al. Three-dimensional vortex-induced vibrations of supported pipes conveying fluid based on wake oscillator models. Journal of Sound and Vibration, 2018, 422: 590-612 doi: 10.1016/j.jsv.2018.02.032
    [30] 李艳, 成赟, 郭轶可等. 内外流共同作用下输流软管力学特性研究. 水资源与水工程学报, 2018, 29(3): 182-193 (Li Yan, Cheng Yun, Guo Yike, et al. Mechanical characteristics research on flexible hose under the influence of internal and external fluid. Journal of Water Resources and Water Engineering, 2018, 29(3): 182-193 (in Chinese) doi: 10.11705/j.issn.1672-643X.2018.03.31
    [31] Zhu HJ, Gao Y, Zhao H. Experimental investigation on the flow-induced vibration of a free-hanging flexible riser by internal unstable hydrodynamic slug flow. Ocean Engineering, 2018, 164: 488-507 doi: 10.1016/j.oceaneng.2018.06.071
    [32] Meng S, Chen Y, Che C. Slug flow's intermittent feature affects VIV responses of flexible marine risers. Ocean Engineering, 2020, 205: 106883 doi: 10.1016/j.oceaneng.2019.106883
    [33] Li FQ, An C, Duan ML, et al. Combined damping model for dynamics and stability of a pipe conveying two-phase flow. Ocean Engineering, 2020, 195: 106683 doi: 10.1016/j.oceaneng.2019.106683
    [34] Passano E, Larsen CM, Lie H, et al. VIVANA−Theory Manual Version 4.8. Trondheim, Norway, 2016
    [35] Gopalkrishnan R. Vortex-induced forces on oscillating bluff cylinders. [PhD Thesis]. Massachusetts Institute of Technology, Cambridge, MA, USA, 1993.
    [36] 宋磊建. 涡激振动状态下的柔性立管水动力特性研究. [博士论文]. 上海: 上海交通大学, 2016

    (Song Leijian. Investigation on the hydrodynamics of a flexible riser under vortex-induced vibration. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2016 (in Chinese))
    [37] 唐友刚. 高等结构动力学. 天津: 天津大学出版社, 2000

    (Tang Yougang. Advanced Structural Dynamics. Tianjin: Tianjin University Press, 2000 (in Chinese))
    [38] Blevins RD, Coughran CS. Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number. Journal of Fluids Engineering, 2009, 131(10): 101202
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  24
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 录用日期:  2021-06-10
  • 网络出版日期:  2021-06-13

目录

    /

    返回文章
    返回

    重要通知

    近日,本刊多次接到来电,称有不法网站冒充《力学学报》杂志官网,并向投稿人收取高额审稿费用。在此,我们郑重申明:

    1.《力学学报》官方网站(https://lxxb.cstam.org.cn/)是本刊唯一的投稿渠道,《力学学报》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

    2.《力学学报》在稿件录用前不以任何形式向作者收取包括审稿费、中介费等在内的任何费用!请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62536271。

    感谢大家多年来对《力学学报》的支持与厚爱,欢迎继续关注我们!