EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

挠性航天器太阳翼全局模态动力学建模与实验研究

何贵勤 曹登庆 陈帅 黄文虎

何贵勤, 曹登庆, 陈帅, 黄文虎. 挠性航天器太阳翼全局模态动力学建模与实验研究. 力学学报, 2021, 53(8): 2312-2322 doi: 10.6052/0459-1879-21-170
引用本文: 何贵勤, 曹登庆, 陈帅, 黄文虎. 挠性航天器太阳翼全局模态动力学建模与实验研究. 力学学报, 2021, 53(8): 2312-2322 doi: 10.6052/0459-1879-21-170
He Guiqin, Cao Dengqing, Chen Shuai, Huang Wenhu. study on global mode dynamic modeling and experiment for a solar array of the flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2312-2322 doi: 10.6052/0459-1879-21-170
Citation: He Guiqin, Cao Dengqing, Chen Shuai, Huang Wenhu. study on global mode dynamic modeling and experiment for a solar array of the flexible spacecraft . Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2312-2322 doi: 10.6052/0459-1879-21-170

挠性航天器太阳翼全局模态动力学建模与实验研究

doi: 10.6052/0459-1879-21-170
基金项目: 国家自然科学基金资助项目(11732005)
详细信息
    作者简介:

    曹登庆, 教授, 主要研究方向: 非线性动力学、航天器动力学与控制、结构动力学与振动控制. E-mail: dqcao@hit.edu.cn

  • 中图分类号: O322

STUDY ON GLOBAL MODE DYNAMIC MODELING AND EXPERIMENT FOR A SOLAR ARRAY OF THE FLEXIBLE SPACECRAFT

  • 摘要: 现代柔性航天器通常安装有大型太阳翼为其在轨运行提供所需动力. 航天器入轨后太阳翼展开并锁定成为铰链连接多板结构, 此类结构质量轻、跨度大、刚度低的特点使其低频振动和非线性振动问题越来越凸显. 分析和处理此类结构出现的复杂振动问题的关键在于建立系统精确的非线性动力学模型. 为此, 本文提出铰链连接多板结构解析全局模态的提取方法, 获取太阳翼的固有频率和解析函数表征的全局模态. 提出可变刚度的扭转弹簧等效模型, 考虑铰链非线性刚度及摩擦力矩等因素, 通过全局模态离散得到系统的低维高精度非线性动力学模型, 研究了太阳翼在周期激励作用下的非线性特性. 开展太阳翼地面振动实验研究, 采用锤击法获取系统模态, 利用振动台施加正弦扫频激励, 将物理实验结果与理论结果进行对比, 从而验证全局模态动力学建模方法的合理性与准确性. 结果表明, 铰链刚度等结构参数对系统固有特性的影响较大, 铰链的存在会使太阳翼的动态响应出现跳跃等非线性现象. 全局模态动力学建模方法能很好地解决多板结构在非经典边界下解析全局模态求解的困难, 系统全局模态反映的是系统各个部件弹性振动的真实模态, 所建立的动力学模型具有低维高精度的特点, 对于复杂组合结构非线性动力学建模具有重要的参考价值.

     

  • 图  1  铰链连接多板结构示意图

    Figure  1.  Schematic of the solar array

    图  2  铰链连接多板结构实验平台

    Figure  2.  Test platform of the hinged multi-panel structure

    图  3  扭转弹簧

    Figure  3.  Rotational spring

    图  4  锤击法模态测试

    Figure  4.  Experimental setup of hammer test

    图  5  振动台激励实验系统

    Figure  5.  Experimental setup of vibrator test

    图  6  太阳翼有限元模型

    Figure  6.  Finite element model of the solar array in ANSYS

    图  7  全局模态方法、有限元方法与模型实验的前4阶振型对比

    Figure  7.  Comparison of mode shapes obtained by the global mode method, FEM and experiment

    图  8  测点1和测点3的动态测试时域响应

    Figure  8.  Time-domain responses of the dynamic test for point 1 and point 3

    图  9  激励幅值为5 mm和7 mm时测点3的动态测试时域响应

    Figure  9.  Time-domain response of the dynamic test for the point 3 with excitation amplitude 5 mm and 7 mm

    图  10  激励幅值为5 mm时测点3的幅频响应曲线(理论结果, kn = 1200 ${\rm{N}} \cdot {\rm{m/ra}}{{\rm{d}}^3}$)

    Figure  10.  Amplitude−frequency curve of point 3 with excitation amplitude 5 mm (theoretical results, kn = 1200${\rm{N}} \cdot {\rm{m/ra}}{{\rm{d}}^3}$)

    图  11  激励幅值为5 mm时测点3的实验与理论响应对比(kn = 1200 ${\rm{N}} \cdot {\rm{m/ra}}{{\rm{d}}^3}$)

    Figure  11.  Comparison between the experimental and theoretical amplitude-frequency curve of point 3 with excitation amplitude 5 mm (kn = 1200 ${\rm{N}} \cdot {\rm{m/ra}}{{\rm{d}}^3}$)

    表  1  太阳翼(铰链连接多板结构)几何参数与材料常数

    Table  1.   Geometric parameters and material constants of the solar array (multi-panel structure)

    ParametersValues
    length of the panel a/m0.3
    width of the panel b/m0.3
    thickness of the panel h/m0.0015
    elastic modulus of the panel E/Pa7.0 × 1010
    mass density of the panel ${\rho _0}$/(kg·m−3)2700
    Poisson ratio $v$0.3
    position of the joints Ai ${y_a}$/m0.04
    position of the joints Bi ${y_b}$/m0.26
    stiffness of the rotation spring k/(${\rm{N}} \cdot {\rm{m\cdot rad}^{-1}}$)35
    damping coefficients of panel${\kappa _M}$, ${\kappa _N}$0.002, 0.001
    spring damping coefficients c/(${\rm{N}} \cdot {\rm{m \cdot ra}}{{\rm{d}}^{-3}}$)30
    下载: 导出CSV

    表  2  全局模态方法、有限元方法与模型实验的前4阶固有频率对比

    Table  2.   Comparison of the first four natural frequencies of the system,$f$

    Frequency orderFrequency/HzError/%Frequency/HzError/%
    ExperimentProposed methodExperimentANSYS
    11.0771.0254.8281.0771.0076.500
    26.2626.1941.0866.2626.0703.066
    317.01316.1784.90817.01315.9146.460
    446.82744.8144.29946.82744.8494.224
    下载: 导出CSV

    表  3  不同弹簧刚度的前4阶频率

    Table  3.   First four natural frequencies with different spring stiffness

    Frequency orderk = 35 k = 350
    ExperimentProposed methodError/%ExperimentProposed methodError/%
    11.0771.0254.8281.1891.1334.710
    26.0626.1942.1777.0156.8232.737
    317.01316.1784.90818.61417.7564.609
    446.87744.8144.40148.19146.2913.943
    下载: 导出CSV
  • [1] 曹登庆, 白坤朝, 丁虎等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019, 51(1): 1-13 (Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13 (in Chinese) doi: 10.6052/0459-1879-18-054
    [2] 魏进, 曹登庆, 于涛. 复合柔性结构全局模态函数提取与状态空间模型构建. 力学学报, 2019, 51(2): 341-353 (Wei Jin, Cao Dengqing, Yu Tao. Extraction of global mode functions and construction of state space model for a composite flexible structure. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 341-353 (in Chinese) doi: 10.6052/0459-1879-18-356
    [3] 郭祥, 靳艳飞, 田强. 随机空间柔性多体系统动力学分析. 力学学报, 2020, 52(6): 1730-1742 (Guo Xiang, Jin Yanfei, Tian Qiang. Dynamics analysis of stochastic spatial flexible multibody system. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1730-1742 (in Chinese) doi: 10.6052/0459-1879-20-273
    [4] 吴吉, 章定国, 黎亮等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019, 51(4): 1134-1147 (Wu Ji, Zhang Dingguo, Li Liang, et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1134-1147 (in Chinese) doi: 10.6052/0459-1879-19-027
    [5] 王云, 郑钢铁. 大范围运动柔性结构动力学离散方法比较研究. 强度与环境, 2013, 40(3): 1-9 (Wang Yun, Zheng Gangtie. The comparative study on the dynamic discrete method for flexible structures with large overall motion. Structure & Environment Engineering, 2013, 40(3): 1-9 (in Chinese) doi: 10.3969/j.issn.1006-3919.2013.03.001
    [6] 顾伟, 张博, 丁虎等. 2∶1内共振条件下变转速预变形叶片的非线性动力学响应. 力学学报, 2020, 52(4): 1131-1142 (Gu Wei, Zhang Bo, Ding Hu, et al. Nonlinear dynamic response of pre-deformed blade with variable rotational speed under 2∶1 internal resonance. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1131-1142 (in Chinese)
    [7] 张军徽, 崔洋洋, 佟安. 条带式太阳帆的结构动力学分析. 力学学报, 2019, 51(1): 237-244 (Zhang Junhui, Cui Yangyang, Tong An. Structural dynamic and stability analysis of a stripped solar sail. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 237-244 (in Chinese) doi: 10.6052/0459-1879-18-275
    [8] 刘锦阳, 李彬, 洪嘉振. 作大范围空间运动柔性梁的刚-柔耦合动力学. 力学学报, 2006, 38(2): 276-282 (Liu Jingyang, Li Bin, Hong Jiazhen. Rigid-flexible coupling dynamics of a flexible beam with three-dimensional large overall motion. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 276-282 (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.02.018
    [9] 陈萌, 马艳红, 刘书国等. 航空发动机整机有限元模型转子动力学分析. 北京航空航天大学学报, 2007, 33(9): 1013-1016 (Chen Meng, Ma Yanhong, Liu Shuguo, et al. Rotor dynamic analysis of whole aero-engine models based on finite element method. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9): 1013-1016 (in Chinese) doi: 10.3969/j.issn.1001-5965.2007.09.003
    [10] Hablani HB. Modal analysis of gyroscopic flexible spacecraft: a continuum approach. Journal of Guidance Control & Dynamics, 1982, 5(5): 448-457
    [11] Hablani HB. Hinges-free and hinges-locked modes of a deformable multibody space station-a continuum analysis. Journal of Guidance Control Dynamics, 1990, 13(2): 286-296 doi: 10.2514/3.20548
    [12] Hablani HB. Modal identities for multibody elastic spacecraft. Journal of Guidance Control & Dynamics, 1991, 14(14): 294-303
    [13] Jin Z, Wang T. Coupled attitude-orbit control of flexible solar sail for displaced solar orbit. Journal of Spacecraft & Rockets, 2013, 50(3): 675-685
    [14] Li Q, Ma X, Wang T. Reduced model for flexible solar sail dynamics. Journal of Spacecraft & Rockets, 2012, 48: 446-453
    [15] Kammer DC, Allen MS, Mayes RL. Formulation of a craig-bampton experimental substructure using a transmission simulator. Journal of Sound & Vibration, 2015, 359(6): 179-194
    [16] Pan KQ, Liu JY. Investigation on the choice of boundary conditions and shape functions for flexible multi-body system. Acta Mechanica Sinica, 2012, 28(1): 180-189 doi: 10.1007/s10409-011-0527-8
    [17] Wei J, Cao DQ, Liu L, et al. Global mode method for dynamic modeling of a flexible-link flexible-joint manipulator with tip mass. Applied Mathematical Modelling, 2017, 48: 787-805 doi: 10.1016/j.apm.2017.02.025
    [18] Wei J, Cao DQ, Huang WH, et al. Dynamics of a multi-beam structure connected with nonlinear joints: modelling and simulation. Archive of Applied Mechanics, 2018(1): 1-16
    [19] 袁秋帆, 王超磊, 齐乃明等. 单翼大挠性航天器全局模态动力学建模及实验. 宇航学报, 2019, 40(4): 369-377 (Yuan Qiufan, Wang Chaolei, Qi Naiming, et al. Global dynamic modeling for a spacecraft with single large flexible structure and experimental study. Journal of Astronautics, 2019, 40(4): 369-377 (in Chinese)
    [20] 邱志成, 姜衡. 一种柔性铰链连接的柔性板结构振动模态分析. 空间控制技术与应用, 2011, 37(5): 1-7 (Qiu Zhicheng, Jiang Heng. Vibration modal analysis of flexible plate structure connected by a flexible hinge. Aerospace Control and Application, 2011, 37(5): 1-7 (in Chinese) doi: 10.3969/j.issn.1674-1579.2011.05.001
    [21] Cao DQ, Wang LC, Wei J, et al. Natural frequencies and global mode functions for flexible jointed-panel structures. Journal of Aerospace Engineering, 2020, 33(4): 1-10
    [22] He GQ, Cao DQ, Cao YT, et al. Investigation on global analytic modes for a three-axis attitude stabilized spacecraft with jointed panels. Aerospace Science and Technology, 2020, 106: 106087 doi: 10.1016/j.ast.2020.106087
    [23] He GQ, Cao DQ, Wei J, et al. Chen. Study on analytical global modes for a multi-panel structure connected with flexible hinges. Applied Mathematical Modelling, 2021, 91: 1081-1099.
    [24] 王巍, 于登云, 马兴瑞. 航天器铰接结构非线性动力学特性研究进展. 力学进展, 2006, 36(2): 233-238 (Wang Wei, Yu Dengyun, Ma Xingrui. Advances and trends of non-linear dynamics of space joint-dominated structure. Advances in Mechanics, 2006, 36(2): 233-238 (in Chinese)
    [25] 曹登庆, 初世明, 李郑发等. 空间可展机构非光滑力学模型和动力学研究. 力学学报, 2013, 45(1): 3-15 (Cao Dengqing, Chu Shiming, Li Zhengfa, et al. Study on the non-smooth mechanical models and dynamics for space deployable mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 3-15 (in Chinese) doi: 10.6052/0459-1879-12-341
    [26] 张静, 郭宏伟, 刘荣强等. 铰链对含铰结构非线性动力学特性影响分析. 航空学报, 2014, 35(5): 1433-1445 (Zhang Jing, Guo Hongwei, Liu Rongqing, et al. Influence analysis of joints on nonlinear dynamic characteristics of articulated structures. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1433-1445 (in Chinese)
    [27] 何昊南, 于开平, 唐宏等. 有间隙折叠舵面的振动实验与非线性建模研究. 力学学报, 2019, 51(5): 1476-1488 (He Haonan, Yu Kaiping, Tang Hong, et al. Vibration experiment and nonlinear modelling research on the folding fin with freeplay. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1476-1488 (in Chinese) doi: 10.6052/0459-1879-19-119
    [28] Wang J, Li DX. Experiments study on attitude coupling control method for flexible spacecraft. Acta Astronautica, 2018, 147: 393-402 doi: 10.1016/j.actaastro.2018.03.023
    [29] Bhat RB. Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method. Journal of Sound & Vibration, 1985, 102: 493-499
    [30] 吴爽, 赵寿根, 吴大方等. 太阳翼铰链结构的动力学实验与非线性动力学建模. 宇航学报, 2013, 34(12): 1550-1556 (Wu Shuang, Zhao Shougen, Wu Dafang, et al. Dynamic experiments and nonlinear dynamics modeling of joints in solar array. Journal of Astronautics, 2013, 34(12): 1550-1556 (in Chinese) doi: 10.3873/j.issn.1000-1328.2013.12.003
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  155
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 录用日期:  2021-07-16
  • 网络出版日期:  2021-07-17
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回