EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁场−渗流场耦合作用下离子液体多孔介质流动模型

贾虎 张瑞 黎棚武

贾虎, 张瑞, 黎棚武. 电磁场−渗流场耦合作用下离子液体多孔介质流动模型. 力学学报, 2021, 53(8): 2214-2224 doi: 10.6052/0459-1879-21-156
引用本文: 贾虎, 张瑞, 黎棚武. 电磁场−渗流场耦合作用下离子液体多孔介质流动模型. 力学学报, 2021, 53(8): 2214-2224 doi: 10.6052/0459-1879-21-156
Jia Hu, Zhang Rui, Li Pengwu. Flow model of ionic liquids in porous media under coupled electromagnetic and seepage fields. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2214-2224 doi: 10.6052/0459-1879-21-156
Citation: Jia Hu, Zhang Rui, Li Pengwu. Flow model of ionic liquids in porous media under coupled electromagnetic and seepage fields. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2214-2224 doi: 10.6052/0459-1879-21-156

电磁场−渗流场耦合作用下离子液体多孔介质流动模型

doi: 10.6052/0459-1879-21-156
基金项目: 霍英东教育基金会高等院校青年教师基金资助项目(171043)
详细信息
    作者简介:

    贾虎, 教授, 主要研究方向: 油田化学与提高油气采收率. E-mail: jiahuswpu@swpu.edu.cn

  • 中图分类号: TE312

FLOW MODEL OF IONIC LIQUIDS IN POROUS MEDIA UNDER COUPLED ELECTROMAGNETIC AND SEEPAGE FIELDS

  • 摘要: 离子液体是一类可调控、多功能的绿色环保材料, 具有良好的电磁场响应, 有望应用于调控水驱油路径. 在分析离子液体在毛细管中电磁场响应机理的基础上, 建立了电磁场−渗流场耦合作用下离子液体多孔介质流动模型. 通过理论推导与数值分析发现: 电磁场−渗流场耦合作用下毛细管流量大小主要由离子液体电导率与黏度的比值(内因)、电磁场强度与压力梯度(外因)两方面决定; 电磁场产生的洛伦兹力对离子液体施加一个电磁驱动压强, 形成一个类似压力梯度的电磁驱动等效压力梯度, 从而改变离子液体的流量, 当电磁场强度为2.0 × 104 V/m·T时, 电磁场在电导率为0.5 S/m的离子液体上可形成10 kPa/m电磁驱动等效压力梯度. 通过调整电磁场方向即可控制离子液体在多孔介质中的流动方向, 解决常规注水利用压力差难以控制流动路径的难题, 为离子液体智能驱油提供理论依据, 且电磁场产生的热效应会影响离子液体的流动能力及潜在驱油效率.

     

  • 图  1  离子液体宏观与微观状态示意图

    Figure  1.  Diagram of the macroscopic and microscopic states of ionic liquids

    图  2  离子液体([bmim]FeCl4)的磁场响应[25]

    Figure  2.  Magnetic field response of ionic liquid [bmim]FeCl4[25]

    图  3  离子液体在电磁场作用下的毛细管模型

    Figure  3.  Capillary model of ionic liquids under electromagnetic field

    图  4  基于“直毛细管”的多孔介质一维流动模型

    Figure  4.  One-dimensional flow model of porous media based on “straight capillary”

    图  5  基于“毛细管组”的多孔介质三维流动模型

    Figure  5.  Three-dimensional flow model of porous media based on “capillary group”

    图  6  单位体积离子液体的洛伦兹力与电磁场强度的关系

    Figure  6.  The relationship between Lorentz force per unit volume of ionic liquids and electromagnetic field strength

    图  7  毛细管流量与离子液体电导率、黏度的关系

    Figure  7.  The relationship between capillary flow rate and conductivity and viscosity of ionic liquid

    图  8  离子液体的毛细管流量与电磁场强度的关系

    Figure  8.  The relationship between capillary flow rate of ionic liquids and electromagnetic field strength

    图  9  毛细管流量与压力梯度、电磁场强度的三维关系

    Figure  9.  Three-dimensional relationship between capillary flow rate, pressure gradient and electromagnetic field strength

    图  10  离子液体在(a) x方向和(b) y方向平均线性流速与洛伦兹力方向参数的三维关系

    Figure  10.  Three-dimensional relationship between the average linear velocity of ionic liquids in the (a) x-direction and (b) y-direction and the direction parameter of Lorentz force

    图  11  离子液体在z方向的平均线性流速与洛伦兹力方向参数、密度的三维关系

    Figure  11.  Three-dimensional relationship between the average linear velocity of ionic liquids in the z-direction, the direction parameter of Lorentz force and density

    图  12  不同离子液体的毛细管流量与压力梯度的关系

    Figure  12.  The relationship between capillary flow and pressure gradient of different ionic liquids

    图  13  在平面上存在优势通道时(a)传统水驱和(b)离子液体驱的流动路径示意

    Figure  13.  Diagram of the flow paths of (a) traditional waterflooding and (b) ionic liquids flooding when there is a dominant channel laterally

    图  14  在纵向上存在高渗层时(a)传统水驱和(b)离子液体驱的流动路径示意

    Figure  14.  Diagram of the flow paths of (a) traditional waterflooding and (b) ionic liquids flooding when there is a high permeability layer vertically

    图  15  两种常见离子液体的毛细管流量与温度的关系

    Figure  15.  The relationship between capillary flow and temperature of two common ionic liquids

    表  1  五种离子液体的电导率和黏度

    Table  1.   Conductivity and viscosity of five ionic liquids

    Ionic liquids[bmim][(C2F5SO2)2N][bmim][(CF3SO2)2N][bmim][CF3SO3][bmim][PF6][bmim][BF4]
    $\sigma $/(S·m−1)0.140.390.290.150.35
    $\mu $/(mPa·s)108.4049.5883.64258.7499.42
    ${\sigma \cdot \mu^{-1} }$/(S·m−1·Pa−1·s−1)1.297.873.470.583.52
    下载: 导出CSV

    表  2  离子液体[bmim][PF6]在不同温度下的电导率和黏度

    Table  2.   Conductivity and viscosity of ionic liquid [bmim][PF6] at different temperatures

    T/°C2535455565
    $\sigma $/(S·m−1)0.150.250.390.570.80
    $\mu $/(mPa·s)258.74140.0484.1754.8138.00
    ${\sigma \cdot \mu^{-1} }$/(S·m−1·Pa−1·s−1)0.581.794.6310.4021.05
    下载: 导出CSV

    表  3  离子液体[bmim][BF4]在不同温度下的电导率和黏度

    Table  3.   Conductivity and viscosity of ionic liquid [bmim][BF4] at different temperatures

    T/°C2535455565
    $\sigma $/(S·m−1)0.350.550.811.131.51
    $\mu $/(mPa·s)99.4260.2939.4127.3419.89
    ${\sigma \cdot \mu^{-1} }$/(S·m−1·Pa−1·s−1)3.529.1220.5541.3375.92
    下载: 导出CSV
  • [1] 侯玉培. 整装油藏流场重整提高采收率的数值模拟研究. [硕士论文]. 东营: 中国石油大学(华东), 2011

    (Hou Yupei. Numerical simulation research of uncompartmentalized oilfields by flow field reforming to improve oil recovery. [Master Thesis]. Dongying: China University of Petroleum (East China), 2011 (in Chinese))
    [2] 贾虎, 邓力珲. 基于流线聚类人工智能方法的水驱油藏流场识别. 石油勘探与开发, 2018, 45(2): 312-319 (Jia Hu, Deng Lihui. Oil reservoir water flooding flowing area identification based on the method of streamline clustering artificial intelligence. Petroleum Exploration and Development, 2018, 45(2): 312-319 (in Chinese) doi: 10.1016/S1876-3804(18)30034-X
    [3] 贾爱林, 郭建林. 智能化油气田建设关键技术与认识. 石油勘探与开发, 2012, 39(1): 118-122 (Jia Ailin, Guo Jianlin. Key technologies and understandings on the construction of smart fields. Petroleum Exploration and Development, 2012, 39(1): 118-122 (in Chinese)
    [4] 张玉松, 刘琦, 彭勃等. 智能纳米化学驱油剂研究现状. 现代化工, 2020, 40(6): 19-23 (Zhang Yusong, Liu Qi, Peng Bo, et al. Development of smart nanomaterials for enhanced oil recovery. Modern Chemical Industry, 2020, 40(6): 19-23 (in Chinese)
    [5] 邓友全. 离子液体—性质、制备与应用. 北京: 中国石化出版社, 2006.

    (Deng Youquan. Ionic Liquid-Property, Preparation and Application. Beijing: China Petrochemical Press, 2006 (in Chinese))
    [6] Singh VV, Nigam AK, Batra A, et al. Applications of ionic liquids in electrochemical sensors and biosensors. International Journal of Electrochemistry, 2012, 2012: 1-19
    [7] Ohno H. Electrochemical Aspects of Ionic Liquids. John Wiley & Sons, 2005
    [8] Armand M, Endres F, Macfarlane DR, et al. Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 2009, 8(8): 621-629 doi: 10.1038/nmat2448
    [9] 曹建平, 牟永晓, 陈媛媛等. 离子液体在药物研究中的应用. 药学学报, 2019, 54(2): 245-257 (Cao Jianping, Mou Yongxiao, Chen Yuanyuan, et al. Application of ionic liquids in drug research. Acta Pharmace utica Sinica, 2019, 54(2): 245-257 (in Chinese)
    [10] Earle MJ, Seddon KR. Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 2000, 72(7): 1391-1398 doi: 10.1351/pac200072071391
    [11] Zhao H. Innovative applications of ionic liquids as “green” engineering liquids. Chemical Engineering Communications, 2006, 193(12): 1660-1677 doi: 10.1080/00986440600586537
    [12] Souza RF, Alencar M, Meneghetti MR, et al. Nonlocal optical nonlinearity of ionic liquids. Journal of Physics: Condensed Matter, 2008, 20(15): 155102 doi: 10.1088/0953-8984/20/15/155102
    [13] Dahbag MB, Hossain ME, Alquraishi AA. Efficiency of ionic liquids as an enhanced oil recovery chemical: simulation approach. Energy & Fuels, 2016, 30(11): 9260-9265
    [14] Nabipour M, Ayatollahi S, Keshavarz P. Application of different novel and newly designed commercial ionic liquids and surfactants for more oil recovery from an Iranian oil field. Journal of Molecular Liquids, 2017, 230: 579-588 doi: 10.1016/j.molliq.2017.01.062
    [15] Velusamy S, Sakthivel S, Sangwai JS. Effect of imidazolium-based ionic liquids on the interfacial tension of the alkane–water system and its influence on the wettability alteration of quartz under saline conditions through contact angle measurements. Industrial & Engineering Chemistry Research, 2017, 56(46): 13521-13534
    [16] Manshad AK, Rezaei M, Moradi S, et al. Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding. Journal of Molecular Liquids, 2017, 248: 153-162 doi: 10.1016/j.molliq.2017.10.009
    [17] Pillai P, Kumar A, Mandal A. Mechanistic studies of enhanced oil recovery by imidazolium-based ionic liquids as novel surfactants. Journal of Industrial and Engineering Chemistry, 2018, 63: 262-274 doi: 10.1016/j.jiec.2018.02.024
    [18] BinDahbag MS, Hassanzadeh H, AlQuraishi AA, et al. Suitability of ionic solutions as a chemical substance for chemical enhanced oil recovery-A simulation study. Fuel, 2019, 242: 368-373 doi: 10.1016/j.fuel.2018.12.125
    [19] Miklés Z, 刘明杰. 电场和磁场响应的智能高分子材料. 生命科学, 2008(3): 369-374 (Miklés Z, Liu Mingjie. Magnetic and electric field responsive soft materials. Chinese Bulletin of Life Science, 2008(3): 369-374 (in Chinese) doi: 10.3969/j.issn.1004-0374.2008.03.012
    [20] 李炜, 姜燕妮, 颜君毅等. 磁场对双扩散液层热毛细对流的影响. 力学学报, 2012, 44(3): 481-486 (Li Wei, Jiang Yanni, Yan Junyi, et al. Effect of magnetic field on thermocapillary convection in a double-diffusive liquid layer. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 481-486 (in Chinese) doi: 10.6052/0459-1879-2012-3-20120303
    [21] Kothari N, Raina B, Chandak KB, et al. Application of ferrofluids for enhanced surfactant flooding in IOR//SPE EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, Spain, June 2010, SPE-131272-MS
    [22] 姚军, 黄涛, 黄朝琴等. 磁场-渗流场耦合作用下的铁磁流体多孔介质流动数值模拟. 科学通报, 2017, 62(8): 836-846 (Yao Jun, Huang Tao, Huang Chaoqin, et al. Numerical simulation of ferrofluid flow in porous media under coupled magnetic and seepage fields. Chinese Science Bulletin, 2017, 62(8): 836-846 (in Chinese) doi: 10.1360/N972015-01460
    [23] Rosensweig RE. Magnetic fluids. Annual Review of Fluid Mechanics, 1987, 19(1): 437-461 doi: 10.1146/annurev.fl.19.010187.002253
    [24] 姚田, 姚舜, 宋航. 磁性离子液体的应用研究进展. 化工进展, 2016, 35(S2): 214-218 (Yao Tian, Yao Shun, Song Hang. Application progress of magnetic ionic liquids. Chemical Industry and Engineering Progress, 2016, 35(S2): 214-218 (in Chinese)
    [25] Hayashi S, Hamaguchi H. Discovery of a magnetic ionic liquid [bmim]FeCl4. Chemistry Letters, 2004, 33(12): 1590-1591 doi: 10.1246/cl.2004.1590
    [26] Wasserscheid P, Welton T. Ionic Liquids in Synthesis. John Wiley & Sons, 2008
    [27] Eijkel JCT, Dalton C, Hayden CJ, et al. A circular ac magnetohydrodynamic micropump for chromatographic applications. Sensors and Actuators B: Chemical, 2003, 92(1-2): 215-221 doi: 10.1016/S0925-4005(03)00267-3
    [28] 万静, 梁忠诚. 离子液体电磁驱动研究. 南京邮电大学学报(自然科学版), 2012, 32(2): 97-102 (Wan Jing, Liang Zhongcheng. Electromagnetic drive of ionic liquids. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2012, 32(2): 97-102 (in Chinese)
    [29] Kataoka H, Saito Y. New approached for determining the degree of dissociation of a salt by measurements of dynamic properties of lithium ion electrolytes. The Journal of Physical Chemistry B, 2002, 106(50): 13064-13068 doi: 10.1021/jp020703y
    [30] Scheidegger AE. The physics of flow through porous media. Soil Science, 1958, 86(6): 355
    [31] Tokuda H, Hayamizu K, Ishii K, et al. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. The Journal of Physical Chemistry B, 2004, 108(42): 16593-16600 doi: 10.1021/jp047480r
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  78
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-15
  • 录用日期:  2021-07-30
  • 网络出版日期:  2021-07-31
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回