EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多变量小样本的渗流代理模型及产量预测方法

曹冲 程林松 张向阳 贾品 时俊杰

曹冲, 程林松, 张向阳, 贾品, 时俊杰. 基于多变量小样本的渗流代理模型及产量预测方法. 力学学报, 2021, 53(8): 2345-2354 doi: 10.6052/0459-1879-21-155
引用本文: 曹冲, 程林松, 张向阳, 贾品, 时俊杰. 基于多变量小样本的渗流代理模型及产量预测方法. 力学学报, 2021, 53(8): 2345-2354 doi: 10.6052/0459-1879-21-155
Cao Chong, Cheng Linsong, Zhang Xiangyang, Jia Pin, Shi Junjie. Seepage proxy model and production forecast method based on multivariate and small sample. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2345-2354 doi: 10.6052/0459-1879-21-155
Citation: Cao Chong, Cheng Linsong, Zhang Xiangyang, Jia Pin, Shi Junjie. Seepage proxy model and production forecast method based on multivariate and small sample. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2345-2354 doi: 10.6052/0459-1879-21-155

基于多变量小样本的渗流代理模型及产量预测方法

doi: 10.6052/0459-1879-21-155
基金项目: 国家自然科学基金资助项目(U1762210, 51774297)和中国石油科技项目重大项目(ZLZX2020-02-04)资助
详细信息
    作者简介:

    程林松, 教授, 主要研究方向: 油气田开发理论与系统工程. E-mail: lscheng@cup.edu.cn

    贾品, 副教授, 主要研究方向: 油气田开发理论与系统工程. E-mail:pjia@cup.edu.cn

  • 中图分类号: TE328

SEEPAGE PROXY MODEL AND PRODUCTION FORECAST METHOD BASED ON MULTIVARIATE AND SMALL SAMPLE

  • 摘要: 多孔介质渗流过程中存在的多尺度、多变量、多物理场耦合的非线性渗流问题给复杂渗流机理的表征及数学模型求解提出了巨大的挑战, 综合考虑地下多孔介质耦合渗流过程中关键力学问题的渗流模型往往需要在计算效率和计算精度之间权衡. 近年来, 基于油田多数据的渗流代理模型为高效求解多变量非线性渗流问题提供了思路, 而渗流代理模型在实际油田中的应用往往由于记录不全, 操作不当等因素受到小样本数据的限制. 针对这一问题, 本文提出了一种基于地质−油藏−工艺的多数据小样本渗流代理模型的产量预测方法. 通过填补缺失值, 独热编码分类数据, 数据对数化及标准化等一系列数据预处理方法, 形成了油田产量预测数据库; 经过随机劈分数据集、十折交叉验证, 测试了三种渗流代理模型的预测效果. 结果表明, 三种代理模型的决定系数均超过0.8, 模型预测结果与实际数据较为吻合; 对于小样本多变量的油田数据, 合适的数据预处理方法对模型预测效果影响显著; 经过数据标准化后, 随机森林算法表现最好, 能快速准确预测石油产量(均方误差0.12, 决定系数0.87).

     

  • 图  1  数据建模技术预测油气产量的一般流程

    Figure  1.  A general flow of data modeling techniques for predicting oil and gas production

    图  2  油田数据库的建立

    Figure  2.  Establishment of oilfield database

    图  3  随机森林预测产量示意图

    Figure  3.  Schematic diagram of random forest forecast oil production

    图  4  转换前数据分布(以孔隙度为例)

    Figure  4.  Data distribution before transformation (taking porosity as an example)

    图  5  转换后数据分布(以孔隙度为例)

    Figure  5.  Data distribution after transformation (taking porosity as an example)

    图  6  产量影响因素分析

    Figure  6.  Analysis of factors affecting oil production

    图  7  随机森林模型标准化对比

    Figure  7.  Standardization comparison of random forest models

    图  8  XGBoost模型标准化对比

    Figure  8.  Standardization comparison of XGBoost models

    图  9  人工神经网络模型标准化对比

    Figure  9.  Standardization comparison of artificial neural network models

    图  10  随机森林目标值与预测值交会图

    Figure  10.  Cross plot of target and predicted values of random forest

    图  11  XGBoost目标值与预测值交会图

    Figure  11.  Cross plot of target and predicted values of XGBoost

    图  12  人工神经网络目标值与预测值交会图

    Figure  12.  Cross plot of target and predicted values of artificial neural networks

    表  1  产量数据库统计分析

    Table  1.   Statistical analysis of oilfield database

    StatisticsφK (10−3μm3)SwSh
    mean11.85.148.725.7
    std2.89.08.08.4
    min5.20.00.07.4
    25%10.61.045.019.3
    50%11.52.948.924.9
    75%12.75.852.630.4
    max47.074.673.854.0
    StatisticsRhperf/mh/mpwf
    mean20.03.412.47.3
    std7.31.25.52.4
    min6.11.14.11.3
    25%14.32.98.55.3
    50%20.13.310.76.5
    75%24.74.015.79.3
    max45.310.027.115.0
    StatisticsΔP/MPaPositionVfrac/m3Q6−m/(t·d−1)
    mean10.7 0.3 62.4 3273
    std5.2 0.5 32.5 2190
    min2.0 0 5.3 0
    25%6.3040.72019
    50%10.0 057.6 3102
    75%14.31.078.04095
    max23.7 1.0 178.9 16 146
    下载: 导出CSV

    表  2  模型参数优化结果

    Table  2.   Model parameter optimization results

    Seepage proxy modelOptimal model structure
    random forestnumber of estimators =150
    min samples split = 2
    XGBoostnumber of estimators = 120
    learning rate = 0.05
    subsample = 0.8
    max depth = 5
    artificial neural networkshidden layers = 2
    first layer = 200 neurons
    second layer = 10 neurons
    activation function = ReLU
    下载: 导出CSV

    表  3  渗流代理模型结果对比

    Table  3.   Comparison of results of seepage proxy model

    Seepage proxy modelDatasetEmsR2
    random foresttrain (70%)0.070.93
    test (30%)0.280.71
    total0.120.87
    XGBoosttrain (70%)0.110.70
    test (30%)0.300.89
    total0.170.83
    artificial neural networkstrain (70%)0.080.92
    test (30%)0.450.54
    total0.200.80
    下载: 导出CSV
  • [1] Arps JJ. Analysis of decline curves. Transactions of the AIME, 1945, 160(1): 228-247 doi: 10.2118/945228-G
    [2] Fetkovich MJ. Decline curve analysis using type curves. Journal of Petroleum Technology, 1980, 32(6): 1065-1077 doi: 10.2118/4629-PA
    [3] 李传亮, 孔祥言, 许广明. 产量递减规律的诊断方法. 石油钻采工艺, 1998(6): 68-70+102 (Li Chuanliang, Kong Xiangyan, Xu Guangming. Diagnosis of the law of production decline. Petroleum Drilling &Production Technology, 1998(6): 68-70+102 (in Chinese)
    [4] Jia P, Cheng L, Huang S, et al. A comprehensive model combining Laplace-transform finite-difference and boundary-element method for the flow behavior of a two-zone system with discrete fracture network. Journal of Hydrology, 2017, 55(1): 453-469
    [5] Wu Y, Cheng L, Fang S, et al. A green element method-based discrete fracture model for simulation of the transient flow in heterogeneous fractured porous media. Advances in Water Resources, 2020, 136: 103489 doi: 10.1016/j.advwatres.2019.103489
    [6] Yan Z, Cao C, Xie M, et al. Pressure behavior analysis of permeability changes due to sand production in offshore loose sandstone reservoirs using boundary-element method. Geofluids, 2021, 2021: 6658875
    [7] Wu YS, Li J, Ding D, et al. A generalized framework model for the simulation of gas production in unconventional gas reservoirs. SPE Journal, 2014, 19(5): 845-857 doi: 10.2118/163609-PA
    [8] Fang S, Cheng L, Ayala LF. A coupled boundary element and finite element method for the analysis of flow through fractured porous media. Journal of Petroleum Science and Engineering, 2017, 152: 375-390 doi: 10.1016/j.petrol.2017.02.020
    [9] Rao X, Cheng L, Cao R, et al. A modified projection-based embedded discrete fracture model (pEDFM) for practical and accurate numerical simulation of fractured reservoir. Journal of Petroleum Science and Engineering, 2020, 187: 106852 doi: 10.1016/j.petrol.2019.106852
    [10] 万义钊, 刘曰武, 吴能友等. 基于离散裂缝的多段压裂水平井数值试井模型及应用. 力学学报, 2018, 50(1): 147-156

    (Wan Yizhao, Liu Yuewu, Wu Nengyou, et al. Numerical well test model and application of multi-stage fractured horizontal well based on discrete fractures, Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 147-156 (in Chinese))
    [11] 刘文超, 刘曰武. 低渗透煤层气藏中气-水两相不稳定渗流动态分析. 力学学报, 2017, 49(4): 828-835 (Liu Wenchao, Liu Yuewu. Dynamic analysis of gas-water two-phase unstable seepage flow in low-permeability coalbed methane reservoirs. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 828-835 (in Chinese)
    [12] 姚同玉, 黄延章, 李继山. 页岩气在超低渗介质中的渗流行为. 力学学报, 2012, 44(6): 990-995 (Yao Tongyu, Huang Yanzhang, Li Jishan. Permeability behavior of shale gas in ultra-low permeability media. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 990-995 (in Chinese)
    [13] Cao Y, Tang M, Zhang Q, et al. Dynamic capillary pressure analysis of tight sandstone based on digital rock model. Capillarity, 2020, 3(2): 28-35 doi: 10.46690/capi.2020.02.02
    [14] Li C, Singh H, Cai J. Spontaneous imbibition in shale: A review of recent advances. Capillarity, 2019, 2(2): 17-32 doi: 10.26804/capi.2019.02.01
    [15] 蔡建超, 夏宇轩, 徐赛等. 含水合物沉积物多相渗流特性研究进展. 力学学报, 2020, 52(1): 208-223 (Cai Jianchao, Xia Yuxuan, Xu Sai, et al. Advances in multiphase seepage characteristics of natural gas hydrate sediments. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223 (in Chinese) doi: 10.6052/0459-1879-19-362
    [16] Schuetter J, Mishra S, Zhong M, et al. A data-analytics tutorial: building predictive models for oil production in an unconventional shale reservoir. SPE Journal, 2018, 23(4): 1075-1089 doi: 10.2118/189969-PA
    [17] Wang Y, Liu H, Zhou Y. Development of a deep learning-based model for the entire production process of steam-assisted gravity drainage (SAGD). Fuel, 2021, 287: 119565 doi: 10.1016/j.fuel.2020.119565
    [18] Yuan Z, Huang H, Jiang Y, et al. Hybrid deep neural networks for reservoir production prediction. Journal of Petroleum Science and Engineering, 2020: 108111
    [19] 吴新根, 葛家理. 应用人工神经网络预测油田产量. 石油勘探与开发, 1994(3): 75-78+131 (Wu Xingen, Ge Jiali. Application of artificial neural network to forecast oilfield production. Petroleum Exploration and Development, 1994(3): 75-78+131 (in Chinese)
    [20] 李留仁, 焦李成. 基于人工神经网络的油田产量多因素非线性时变预测. 西安石油学院学报(自然科学版), 2002(4): 42-44+3 (Li Liuren, Jiao Licheng. Multi-factor nonlinear time-varying prediction of oilfield production based on artificial neural network. Journal of Xi'an Petroleum Institute (Natural Science Edition), 2002(4): 42-44+3 (in Chinese)
    [21] 邢明海, 陈祥光, 王渝. 基于人工神经网络组合预测油田产量. 计算机仿真, 2004(5): 116-120+125 (Xing Minghai, Chen Xiangguang, Wang Yu. Combination forecast of oilfield production based on artificial neural network. Computer Simulation, 2004(5): 116-120+125 (in Chinese) doi: 10.3969/j.issn.1006-9348.2004.05.034
    [22] Chithra CN, Song KY, Gupta MM, et al. An innovative neural forecast of cumulative oil production from a petroleum reservoir employing higher-order neural networks (HONNs). Journal of Petroleum Science and Engineering, 2013, 106: 18-33 doi: 10.1016/j.petrol.2013.03.004
    [23] 马林茂, 李德富, 郭海湘等. 基于遗传算法优化BP神经网络在原油产量预测中的应用: 以大庆油田BED试验区为例. 数学的实践与认识, 2015, 45(24): 117-128 (Ma Linmao, Li Defu, Guo Haixiang, et al. Application of BP neural network optimized based on genetic algorithm in crude oil production prediction: Taking the BED test area of Daqing Oilfield as an example. Mathematics in Practice and Knowledge, 2015, 45(24): 117-128 (in Chinese)
    [24] 李彦尊, 白玉湖, 陈桂华等. 基于人工神经网络方法的页岩油气产量预测新技术——以美国Eagle Ford页岩油气田为例. 中国海上油气, 2020, 32(4): 104-110 (Li Yanzun, Bai Yuhu, Chen Guihua, et al. New technology for shale oil and gas production prediction based on artificial neural network method—Taking the Eagle Ford shale oil and gas field in the United States as an example. China Offshore Oil and Gas, 2020, 32(4): 104-110 (in Chinese)
    [25] Bhattacharya S, Ghahfarokhi PK, Carr TR, et al. Application of predictive data analytics to model daily hydrocarbon production using petrophysical, geomechanical, fiber-optic, completions, and surface data: A case study from the Marcellus Shale, North America. Journal of Petroleum Science and Engineering, 2019, 176: 702-715 doi: 10.1016/j.petrol.2019.01.013
    [26] Wang S, Chen Z, Chen S. Applicability of deep neural networks on production forecasting in Bakken shale reservoirs. Journal of Petroleum Science and Engineering, 2019, 179: 112-125 doi: 10.1016/j.petrol.2019.04.016
    [27] 宋宣毅, 刘月田, 马晶等. 基于灰狼算法优化的支持向量机产能预测. 岩性油气藏, 2020, 32(2): 134-140 (Song Xuanyi, Liu Yuetian, Ma Jing, et al. Support vector machine productivity prediction based on gray wolf algorithm optimization. Lithologic Reservoirs, 2020, 32(2): 134-140 (in Chinese)
    [28] Xue L, Liu Y, Xiong Y, et al. A data-driven shale gas production forecasting method based on the multi-objective random forest regression. Journal of Petroleum Science and Engineering, 2021, 196: 107801 doi: 10.1016/j.petrol.2020.107801
    [29] Breiman L, Cutler A. Manual–setting up, using, and understanding random forests 2011, V4.0. 2003. URL https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf.
    [30] Read J, Pfahringer B, Holmes G, et al. Classifier chains for multi-label classification. Machine learning, 2011, 85(3): 333 doi: 10.1007/s10994-011-5256-5
    [31] Breiman I. Random forests. Machine Learning, 2001, 45(1): 5-32 doi: 10.1023/A:1010933404324
    [32] Quinlan JR. Induction of decision trees. Machine Learning, 1986, 1(1): 81-106
    [33] Friedman JH. Stochastic gradient boosting. Computational Stats & Data Analysis, 2002, 38(4): 367-378
    [34] Chen T, Guestrin C. XGBoost: A scalable tree boosting system// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). 2016: 785-794
    [35] 李占山, 刘兆赓. 基于XGBoost的特征选择算法. 通信学报, 2019(10): 101-108 (Li Zhanshan, Liu zhaogeng. Feature selection algorithm based on xgboost. Acta Telecom Sinica, 2019(10): 101-108 (in Chinese) doi: 10.11959/j.issn.1000-436x.2019154
    [36] Jiang F, Yang J, Cheng Y, et al. An aging-aware soc estimation method for lithium-ion batteries using xgboost algorithm//International Conference on Prognostics and Health Management (ICPHM). IEEE, 2019
    [37] Yang JS, Zhao CY, Yu HT, et al. Use GBDT to predict the stock market. Procedia Computer Science, 2020, 174: 161-171
    [38] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444 doi: 10.1038/nature14539
    [39] Mohanty S. Estimation of vapour liquid equilibria of binary systems, carbon dioxide–ethyl caproate, ethyl caprylate and ethyl caprate using artificial neural networks. Fluid Phase Equilibria, 2005, 235(1): 92-98 doi: 10.1016/j.fluid.2005.07.003
    [40] 宫金良, 孙晓峰, 张彦斐. 多层感知器自监督在线修正的道路识别算法. 交通运输系统工程与信息, 2019, 19(4): 101-107 (Gong Jinliang, Sun Xiaofeng, Zhang Yanfei. Multilayer perceptron self-supervised online correction road recognition algorithm. Journal of Transportation Sys-ems Engineering and Information Technology, 2019, 19(4): 101-107 (in Chinese)
    [41] 陈小威, 朱文越, 钱仙妹等. 基于人工神经网络的近地面光学湍流估算. 光学学报, 2020, 40(24): 2401002 (Chen Xiaowei, Zhu Wenyue, Qian Xianmei, et al. Estimation of surface layer optical turbulence using artificial neural network. Acta Optica Sinica, 2020, 40(24): 2401002 (in Chinese) doi: 10.3788/AOS202040.2401002
    [42] García-Pedrajas N, Ortiz-Boyer D, Hervás-Martínez C. Cooperative coevolution of generalized multi-layer perceptions. Neurocomputing, 2004, 56: 257-283 doi: 10.1016/j.neucom.2003.09.004
    [43] Ikuta C, Uwate Y, Nishio Y. Multi-layer perceptron with glial network for solving two-spiral problem. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2011, E94A(9): 1864-1867
    [44] Li YP, Cao WM. An extended multilayer perceptron model using reduced geometric algebra. IEEE Access, 2019, 7: 129815-129823 doi: 10.1109/ACCESS.2019.2940217
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1044
  • HTML全文浏览量:  359
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 录用日期:  2021-07-03
  • 网络出版日期:  2021-07-04
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回