EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密油藏动态裂缝扩展机理及应用

邸士莹 程时清 白文鹏 魏操 汪洋 秦佳正

邸士莹, 程时清, 白文鹏, 魏操, 汪洋, 秦佳正. 致密油藏动态裂缝扩展机理及应用. 力学学报, 2021, 53(8): 2141-2155 doi: 10.6052/0459-1879-21-154
引用本文: 邸士莹, 程时清, 白文鹏, 魏操, 汪洋, 秦佳正. 致密油藏动态裂缝扩展机理及应用. 力学学报, 2021, 53(8): 2141-2155 doi: 10.6052/0459-1879-21-154
Di Shiying, Cheng Shiqing, Bai Wenpeng, Wei Cao, Wang Yang, Qin Jiazheng. Dynamic fracture propagation mechanism and applicationin tight oil reservoir. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2141-2155 doi: 10.6052/0459-1879-21-154
Citation: Di Shiying, Cheng Shiqing, Bai Wenpeng, Wei Cao, Wang Yang, Qin Jiazheng. Dynamic fracture propagation mechanism and applicationin tight oil reservoir. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2141-2155 doi: 10.6052/0459-1879-21-154

致密油藏动态裂缝扩展机理及应用

doi: 10.6052/0459-1879-21-154
基金项目: 国家自然科学基金(11872073)和中国石油天然气集团有限公司−中国石油大学(北京)战略合作科技专项(ZLZX2020-02)资助
详细信息
    作者简介:

    邸士莹, 博士研究生, 主要研究方向: 非常规油藏开发规律研究、致密油渗吸机理研究. Email: 2018312076@student.cup.edu.cn

    程时清, 研究员, 博士生导师, 主要研究方向: 油气藏动态监测、非常规油气田开发、人工智能大数据等. Email: chengsq973@163.com

  • 中图分类号: TE349

DYNAMIC FRACTURE PROPAGATION MECHANISM AND APPLICATIONIN TIGHT OIL RESERVOIR

  • 摘要: 致密油藏采用注水吞吐补充地层能量取得了一定效果. 但多轮次注水吞吐后, 地层压力和产量降低快. 本文考虑了致密油藏复杂的裂缝形态, 根据艾尔文理论及弹性力学剖析I型裂缝尖端附近的应力场分布, 基于渗流力学、裂缝性致密油藏特征及动态裂缝渗流规律, 建立了多裂缝交叉裂缝扩展渗流模型, 结合注水诱导裂缝扩展机理及断裂力学能量守恒原理, 得到裂缝扩展长度. 依据致密油藏逆向渗吸原理, 提出将注水吞吐转为不稳定脉冲注水. 对比分析注水吞吐、脉冲注水2种能量补充发方式, 预测10年累计采油、压力及剩余油分布. 结果表明, 裂缝净内压随着注水量的增加而升高, 当应力场强度因子达到断裂韧度, 在裂缝尖端会发生扩展. 扩展及延伸的天然裂缝相互沟通, 呈现不规则复杂缝网, 在复杂缝网中主要发生逆向渗吸作用. 脉冲注水累计产油高、注水波及面积广、逆向渗吸作用强. 裂缝性致密油藏水平井注水吞吐转变为脉冲注水方式, 能够充分发挥动态缝网的逆向渗吸及线性驱替作用, 实现有效驱油的目的.

     

  • 图  1  裂缝3种类型

    Figure  1.  Three types of fractures

    图  2  应力分布示意图

    Figure  2.  Schematic diagram of stress distribution

    图  3  多裂缝交叉扩展形成动态缝网

    Figure  3.  Multi-fractures cross and expand to form a dynamic fracture network

    4  M56-152H产液量历史拟合结果

    4.  M56-152H Production history matching results

    图  4  M56-152H产液量历史拟合结果 (续)

    Figure  4.  M56-152H Production history matching results (continued)

    图  5  裂缝扩展长度示意图

    Figure  5.  Schematic diagram of crack propagation length

    图  6  注水诱发天然裂缝扩展

    Figure  6.  Water-induced the expansion of natural fractures

    图  7  逆向渗吸作用

    Figure  7.  Reverse imbibition

    图  8  径向和线性驱替作用示意图

    Figure  8.  Diagram of radial and linear displacement

    图  9  裂缝扩展前后径向和线性驱替作用示意图

    Figure  9.  Diagram of radial and linear displacement

    10  注水吞吐和脉冲注水逆向渗吸作用范围对比

    10.  Comparison of water-injection huff and puff and pulse water injection imbibition range

    图  10  注水吞吐和脉冲注水逆向渗吸作用范围对比(续)

    Figure  10.  Comparison of water-injection huff and puff and pulse water injection imbibition range (continued)

    图  11  脉冲注水逆向渗吸及线性驱替作用

    Figure  11.  Reverse imbibition and linear displacement

    图  12  M56-151H井组井位图及裂缝发育情况

    Figure  12.  Well location and fracture development

    图  13  M56-151H产液量历史拟合结果

    Figure  13.  M56-151H Production history matching results

    图  14  模拟裂缝扩展长度结果

    Figure  14.  Simulated fracture propagation length

    图  15  裂缝扩展长度与井距段距对比

    Figure  15.  Result of simulated fracture propagation length

    图  16  注水量300 m3/d时发生水窜

    Figure  16.  Water breakthrough occurs when the water injection volume is 300 m3/d

    图  17  模拟脉冲注水3种方案生产10年预测产量

    Figure  17.  Predicted output of the three schemes of simulated pulse water injection in 10 years

    图  18  注水吞吐与脉冲注水生产10年预测产量

    Figure  18.  Predicted output of water-injection huff and puff and pulsed water injection production for 10 years

    19  脉冲注水前后裂缝分布形态

    19.  Fracture distribution

    图  19  脉冲注水前后裂缝分布形态 (续)

    Figure  19.  Fracture distribution (continued)

    图  20  注水吞吐与脉冲注水剩余油分布对比

    Figure  20.  Comparison of remaining oil distribution

    表  1  数值模拟参数表

    Table  1.   Numerical simulation parameter table

    ParameterValue
    size model size/m 1000 × 800
    grid size/m 10 × 10 × 1
    reservoir parameters depth in the middle of the oil layer/m 2285
    oil layer thickness/m 25 ~ 40
    matrix permeability/μm2 1.8 × 10−5
    porosity/% 0.145
    reservoir temperature/°C 65.3
    original formation pressure/MPa 21.7
    formation fracture pressure/MPa 60 ± 5
    formation pore pressure/MPa 26.5
    minimum horizontal principal stress of formation/MPa 45 ± 10
    pressure gradient/(MPa·hm−1) 8.59
    rock compressibility/MPa−1 1.4254 × 10−3
    comprehensive compression factor/MPa−1 4 × 10−4
    fluid
    parameter
    viscosity of water/(MPa·s) 0.6
    oil viscosity/(MPa·s) 158
    crude oil density/(g·cm−3) 0.89
    oil saturation/% 0.624
    compression system of liquid/MPa−1 1.425 × 10−3
    water saturation/% 23.90%
    volume factor/% 1.18
    crude oil compression factor/MPa−1 9 × 10−4
    well
    parameters
    horizontal well length/m 1000
    fracture half-length/m 30
    fracture width/m 0.003
    number of fracture 11
    well spacing/m 100−200
    distance between segments/m 25−60
    well radius/m 0.1
    initial surface injection pressure/MPa 31
    下载: 导出CSV

    表  2  脉冲注水3种方案

    Table  2.   Three schemes of pulse water injection

    planinjection time/
    d
    shut-in time/
    d
    water injection/
    (m3·d−1)
    oil production/
    (m3·d−1)
    1 1 1 100 50
    2 2 2 100 50
    3 3 3 100 50
    下载: 导出CSV
  • [1] 姚军, 刘礼军, 孙海等. 复杂裂缝性致密油藏注水吞吐数值模拟及机制分析. 中国石油大学学报(自然科学版), 2019, 43(5): 108-117 (Yao Jun, Liu Lijun, Sun Hai, et al. Numerical simulation and mechanism analysis of water injection huff and puff in complex fractured tight oil reservoirs. Journal of China University of Petroleum (Natural Science Edition), 2019, 43(5): 108-117 (in Chinese)
    [2] 樊建明, 王冲, 屈雪峰等. 鄂尔多斯盆地致密油水平井注水吞吐开发实践——以延长组长7油层组为例. 石油学报, 2019, 40(6): 706-715 (Fan Jianming, Wang Chong, Qu Xuefeng, et al. Water injection huff and puff development practice of tight oil horizontal wells in the Ordos Basin: Taking Yanchang Formation Chang 7 reservoir as an example. Acta Petrolei Sinica, 2019, 40(6): 706-715 (in Chinese)
    [3] Hagoort J. Waterflood-induced hydraulic fracturing. [PhD Thesis]. Delft: Delft Technical University, 1981
    [4] Fan TY, Song XM, Wu SH, et al. A mathematical model and numerical simulation of waterflood induced dynamic fractures of low permeability reservoirs. Petroleum Exploration & Development, 2015, 42(4): 541-547
    [5] Wang Y, Cheng SQ, Zhang KD, et al. Investigation on the transient pressure response of water injector coupling the dynamic flow behaviors in the wellbore, waterflood-induced fracture and reservoir: Semi-analytical modeling and a field case. International Journal of Heat & Mass Transfer, 2019, 130: 668-679
    [6] 田虓丰, 程林松, 李春兰等. 致密油藏液测应力敏感性计算模型. 计算物理, 2015, 32(3): 334-342 (Tian Yufeng, Cheng Linsong, Li Chunlan, et al. Calculation model for stress sensitivity measurement of tight oil reservoir fluids. Computational Physics, 2015, 32(3): 334-342 (in Chinese) doi: 10.3969/j.issn.1001-246X.2015.03.009
    [7] 蒲春生, 郑恒, 杨兆平等. 水平井分段体积压裂复杂裂缝形成机制研究现状与发展趋势. 石油学报, 2020, 41(12): 1734-1743 (Pu Chunsheng, Zheng Heng, Yang Zhaoping, et al. Research status and development trend of complex fracture formation mechanism of staged volume fracturing in horizontal wells. Acta Petrolei Sinica, 2020, 41(12): 1734-1743 (in Chinese) doi: 10.7623/syxb202012025
    [8] Rountree CL, Kalia RK, Lidorikis E, et al. Atomistic aspects of crack propagation in brittle aterials: Multimillion atom molecular dynamics simulations. Annual Review of Materials Research, 2002, 32: 377-400 doi: 10.1146/annurev.matsci.32.111201.142017
    [9] 王勃, 张阳博, 左宏等. 压应力对压剪裂纹扩展的影响研究. 力学学报, 2019, 51(3): 845-851 (Wang Bo, Zhang Yangbo, Zuo Hong, et al. Study on the influence of compressive stress on the growth of compressive shear cracks. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 845-851 (in Chinese)
    [10] 唐巨鹏, 齐桐, 代树红等. 水平地应力差对周期注水应力改造水力压裂影响的试验研究. 应用力学学报, 2020(3): 990-998+1385-1386 (Tang Jupeng, Qi Tong, Dai Shuhong, et al. Experimental study on the influence of horizontal in-situ stress difference on hydraulic fracturing by periodic water injection stress. Chinese Journal of Applied Mechanics, 2020(3): 990-998+1385-1386 (in Chinese)
    [11] 王友净, 宋新民, 田昌炳等. 动态裂缝是特低渗透油藏注水开发中出现的新的开发地质属性. 石油勘探与开发, 2015, 42(2): 222-228 (Wang Youjing, Song Xinmin, Tian Changbing, et al. Dynamic fractures are a new development geological attribute that appears in the water injection development of ultra-low permeability reservoirs. Petroleum Exploration and Development, 2015, 42(2): 222-228 (in Chinese)
    [12] 汪洋, 程时清, 于海洋等. 考虑注水诱发微裂缝属性参数变化的注水井不稳定压力分析//中国力学大会2017暨庆祝中国力学学会成立60周年大会, 北京, 2017年8月13日. 739-747

    (Wang Yang, Cheng Shiqing, Yu Haiyang, et al. Analysis of unstable pressure of water injection wells considering the change of micro-fracture attribute parameters induced by water injection//CCTAM-2017 and Celebration of the 60th Anniversary of the Founding of the CSTAM, Beijing, August 13, 2017. 739-747 (in Chinese))
    [13] 严谨, 程时清, 郑荣臣等. 确定压裂裂缝部分闭合的现代产量递减分析方法及应用. 石油钻采工艺, 2018, 40(6): 787-793 (Yan Jin, Cheng Shiqing, Zheng Rongchen, et al. Modern production decline analysis method and application for determining partial closure of fracturing fractures. Petroleum Drilling and Production Technology, 2018, 40(6): 787-793 (in Chinese)
    [14] Wang Y, Cheng SQ, Zhang KD, et al. Pressure-transient analysis of water injectors considering the multiple closures of waterflood-induced fractures in tight reservoirs: Case studies in Changqing Oilfield, China. Journal of Petroleum Science and Engineering, 2019, 172: 643-653 doi: 10.1016/j.petrol.2018.07.052
    [15] 杨正明, 骆雨田, 何英等. 致密砂岩油藏流体赋存特征及有效动用研究. 西南石油大学学报, 2015, 37(3): 85-92

    (Yang Zhengming, Luo Yutian, He Ying, et al. Research on the occurrence characteristics and effective production of fluids in tight sandstone reservoirs. Journal of Southwest Petroleum University, 2015, 37(3): 85-92 (in Chinese))
    [16] 杨正明, 刘学伟, 李海波等. 致密储集层渗吸影响因素分析与渗吸作用效果评价. 石油勘探与开发, 2019, 46(4): 739-745 (Yang Zhengming, Liu Xuewei, Li Haibo, et al. Analysis of factors affecting imbibition in tight reservoirs and evaluation of imbibition effect. Petroleum Exploration and Development, 2019, 46(4): 739-745 (in Chinese) doi: 10.1016/S1876-3804(19)60231-4
    [17] Gao LH, Yang ZM, Shi Y. Experimental study on spontaneous imbibition characteristics of tight rocks. Advances in Geo-Energy Research, 2018, 2(3): 292-304 doi: 10.26804/ager.2018.03.07
    [18] 汪勇, 孙业恒, 蔡建超等. 基于数字岩心与格子Boltzmann方法的致密砂岩自发渗吸模拟研究. 石油科学通报, 2020, 5(4): 458-466 (Wang Yong, Sun Yeheng, Cai Jianchao, et al. Simulation of spontaneous imbibition of tight sandstone based on digital core and lattice Boltzmann method. Petroleum Science Bulletin, 2020, 5(4): 458-466 (in Chinese) doi: 10.3969/j.issn.2096-1693.2020.04.040
    [19] 蔡建超, 郁伯铭. 多孔介质自发渗吸研究. 力学进展, 2012, 42(6): 735-754 (Cai Jianchao, Yu Boming. Research progress of spontaneous imbibition in porous media. Progress in Mechanics, 2012, 42(6): 735-754 (in Chinese)
    [20] 许建红, 马丽丽. 低渗透裂缝性油藏自发渗吸渗流作用. 油气地质与采收率, 2015, 22(3): 111-114 (Xu Jianhong, Ma Lili. Spontaneous imbibition in low-permeability fractured reservoirs. Petroleum Geology and Recovery Efficiency, 2015, 22(3): 111-114 (in Chinese) doi: 10.3969/j.issn.1009-9603.2015.03.020
    [21] 程志林, 王庆, 宁正福等. 基于NMR技术研究边界条件对致密砂岩油水、气水系统渗吸的影响. 石油科学通报, 2018, 3(3): 272-283 (Cheng Zhilin, Wang Qing, Ning Zhengfu, et al. Research on the influence of boundary conditions on the imbibition of tight sandstone oil-water and gas-water systems based on NMR technology. Petroleum Science Bulletin, 2018, 3(3): 272-283 (in Chinese)
    [22] Ghasemi F, Ghaedi M, Escrochi M. A new scaling equation for imbibition process in naturally fractured gas reservoirs. Advances in Geo-Energy Research, 2020, 4(1): 99-106 doi: 10.26804/ager.2020.01.09
    [23] 王家禄, 刘玉章, 陈茂谦等. 低渗透油藏裂缝动态渗吸机理实验研究. 石油勘探与开发, 2009, 36(1): 86-90 (Wang Jialu, Liu Yuzhang, Chen Maoqian, et al. Experimental study on dynamic imbibition mechanism of fractures in low permeability reservoirs. Petroleum Exploration and Development, 2009, 36(1): 86-90 (in Chinese) doi: 10.3321/j.issn:1000-0747.2009.01.011
    [24] 徐中一, 方思冬. 边界层对致密油藏逆向渗吸的数值模拟. 石油与天然气地质, 2020, 41(3): 638-646 (Xu Zhongyi, Fang Sidong. Numerical simulation of reverse imbibition of tight oil reservoir by boundary layer. Oil and Gas Geology, 2020, 41(3): 638-646 (in Chinese)
    [25] 徐中一, 程林松, 曹仁义等. 基于裂缝性致密储层关键渗流参数的逆向渗吸速度计算. 地球科学, 2017, 42(8): 1431-1440 (Xu Zhongyi, Cheng Linsong, Cao Renyi, et al. Calculation of reverse imbibition velocity based on key seepage parameters of fractured tight reservoirs. Earth Science, 2017, 42(8): 1431-1440 (in Chinese)
    [26] 王向阳, 杨正明, 刘学伟等. 致密油藏大模型逆向渗吸的物理模拟实验研究. 科学技术与工程, 2018, 18(8): 43-48 (Wang Xiangyang, Yang Zhengming, Liu Xuewei, et al. Physical simulation experiment research on reverse imbibition of large model of tight oil reservoir. Science Technology and Engineering, 2018, 18(8): 43-48 (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.08.007
    [27] Liu Y, Wang S, Cai JC, et al. Main controlling factors of fracturing fluid imbibition in shale fracture network. Capillarity, 2018, 1: 1-10 doi: 10.26804/capi.2018.01.01
    [28] 马剑, 黄志龙, 钟大康等. 三塘湖盆地马朗凹陷二叠系条湖组凝灰岩致密储集层形成与分布. 石油勘探与开发, 2016, 43(5): 714-722 (Ma Jian, Huang Zhilong, Zhong Dakang, et al. Formation and distribution of tight tuff reservoirs in the Permian Tiaohu Formation in Malang Sag, Santanghu Basin. Petroleum Exploration and Development, 2016, 43(5): 714-722 (in Chinese)
    [29] 李帅, 丁云宏, 吕焕军等. 一维两相同向渗吸模型的求解方法. 断块油气田, 2017, 24(1): 56-59 (Li Shuai, Ding Yunhong, Lü Huanjun, et al. Solving method of one-dimensional two-phase imbibition model. Fault Block Oil and Gas Field, 2017, 24(1): 56-59 (in Chinese)
    [30] 计秉玉, 杨际平, 吕志国. 改变液流方向的数值模拟计算. 大庆石油地质与开发, 1994(2): 73-74 (Ji Bingyu, Yang Jiping, Lü Zhiguo. Numerical simulation calculation of changing the direction of liquid flow. Daqing Petroleum Geology and Development, 1994(2): 73-74 (in Chinese)
    [31] 吴忠宝, 李莉, 张家良等. 低渗透油藏转变注水开发方式研究——以大港油田孔南GD6X1区块为例. 油气地质与采收率, 2021(2): 1-7

    (Wu Zhongbao, Li Li, Zhang Jialiang, et al. Research on the conversion of low-permeability reservoirs to waterflooding development mode: Taking the Kongnan GD6X1 block of Dagang Oilfield as an example. Petroleum Geology and Recovery Efficiency. 2021(2): 1-7 (in Chinese))
    [32] 李伟才, 崔连训, 赵蕊. 水动力改变液流方向技术在低渗透油藏中的应用——以新疆宝浪油田宝北区块为例. 石油与天然气地质, 2012, 33(5): 796-801+810 (Li Weicai, Cui Lianxun, Zhao Rui. The application of the technology of changing the direction of fluid flow by hydrodynamics in low-permeability reservoirs: Taking the Baobei block of Xinjiang Baolang Oilfield as an example. Oil and Gas Geology, 2012, 33(5): 796-801+810 (in Chinese)
    [33] 何庆芝, 郦正能. 工程断裂力学. 北京: 北京航空航天大学出版社, 1993: 34-44

    (He Qingzhi, Li Zhengneng. Engineering Fracture Mechanics. Beijing: Beijing University of Aeronautics and Astronautics Press, 1993: 34-44 (in Chinese))
    [34] 杨新辉, 栾茂田, 杨庆等. 简化脆性断裂裂尖模型及复合型断裂判据. 大连理工大学学报, 2005(5): 712-716 (Yang Xinhui, Luan Maotian, Yang Qing, et al. Simplified brittle fracture tip model and composite fracture criterion. Journal of Dalian University of Technology, 2005(5): 712-716 (in Chinese) doi: 10.3321/j.issn:1000-8608.2005.05.018
    [35] 赵建生. 断裂力学及断裂物理. 武汉: 华中科技大学出版社, 2004: 240-262

    (Zhao Jiansheng. Fracture Mechanics and Fracture Physics. Wuhan: Huazhong University of Science and Technology Press, 2004: 240-262 (in Chinese))
    [36] 万征, 孟达. 基于t准则的各向异性强度准则及变换应力法. 力学学报, 2020, 52(5): 1519-1537 (Wan Zheng, Meng Da. Anisotropic strength criterion based on t criterion and transformation stress method. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1519-1537 (in Chinese) doi: 10.6052/0459-1879-20-138
    [37] 谷岩, 张耀明. 双材料界面裂纹复应力强度因子的正则化边界元法. 力学学报, 2021, 1(2): 1-10 (Yan Gu, Zhang Yaoming. Regularized boundary element method for the complex stress intensity factor of bi-material interface cracks. Chinese Journal of Theoretical and Applied Mechan, 2021, 1(2): 1-10 (in Chinese)
    [38] 文阳阳. 裂纹尖端塑性区对断裂行为的影响. [博士论文]. 上海: 上海交通大学, 2018

    (Wen Yangyang. The influence of crack tip plastic zone on fracture behavior. [PhD Thesis]. Shanghai: Shanghai Jiaotong University, 2018 (in Chinese))
    [39] 徐纪成, 刘大安, 孙宗颀等. 岩石断裂韧度的国际联合试验研究. 中南工业大学学报, 1995(3): 310-313 (Xu Jicheng, Liu Daan, Sun Zongqi, et al. International joint experimental research on rock fracture toughness. Journal of Central South University of Technology, 1995(3): 310-313 (in Chinese)
    [40] Zhang SS, Liu ZF, Shi AF, et al. Development of accurate well models for numerical reservoir simulation. Advances in Geo-Energy Research, 2019, 3(3): 250-257 doi: 10.26804/ager.2019.03.03
    [41] 滕文超. 页岩气藏压裂水平井压力动态及产能分析研究. [博士论文]. 青岛: 中国石油大学(华东), 2017

    (Teng Wenchao. Pressure and rate transient analysis of fractured horizontal wells in shale gas reservoirs. [PhD Thesis]. Qingdao: China University of Petroleum (East China), 2017 (in Chinese))
    [42] Yu W, Xu YF, Weijermars R, et al. Impact of well interference on shale oil production performance: a numerical model for analyzing pressure response of fracture hits with complex geometries//The SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, January 2017
    [43] Xu YF, Sepehrnoori K. Development of an embedded discrete fracture model for field-scale reservoir simulation with complex corner-point grids. SPE J. 2019, 24: 1552-1575
    [44] 阳友奎, 吴刚, 邱贤德等. 水力压裂的能量平衡与断裂韧度. 重庆大学学报, 1992, 15(2): 1-6 (Yang Youkui, Wu Gang, Qiu Xiande, et al. Energy balance and fracture toughness of hydraulic fracturing. Journal of Chongqing University, 1992, 15(2): 1-6 (in Chinese)
    [45] 韩忠英. 重复压裂力学机理研究及应用. [硕士论文]. 青岛: 中国石油大学(华东), 2012

    (Han Zhongying. Research and application of mechanical mechanism of repeated fracturing. [Master Thesis]. Qingdao: China University of Petroleum (East China), 2012 (in Chinese))
    [46] 韩忠英, 程远方, 王京印. 裂缝扩展注水技术中的裂缝扩展规律研究. 石油钻探技术, 2011, 39(6): 82-85 (Han Zhongying, Cheng Yuanfang, Wang Jingyin. Research on the law of fracture propagation in fracture propagation water injection technology. Petroleum Drilling Technology, 2011, 39(6): 82-85 (in Chinese) doi: 10.3969/j.issn.1001-0890.2011.06.019
    [47] 朱维耀, 鞠岩, 赵明等. 低渗透裂缝性砂岩油藏多孔介质渗吸机理研究. 石油学报, 2002, 6: 56-59+3 (Zhu Weiyao, Ju Yan, Zhao Ming, et al. Study on the mechanism of porous media in low permeability fractured sandstone reservoirs. Acta Petrolei Sinica, 2002, 6: 56-59+3 (in Chinese) doi: 10.3321/j.issn:0253-2697.2002.06.012
    [48] Schechter D, Zhou D, Franklin M. Low IFT drainage and imbibition. Journal of Petroleum Science and Engineering, 1994, 11: 283-300 doi: 10.1016/0920-4105(94)90047-7
    [49] Iffly R, Rousselet DC, Vermeulen JL. Fundamental study of imbibition in fifissured oil fifields//Fall Meeting of the Society of Petroleum Engineers of AIME, San Antonio, Texas, October 1972. Paper No. SPE-4102-MS
    [50] 刘卫东, 姚同玉, 刘先贵等. 表面活性剂体系渗吸. 北京: 石油工业出版社, 2007: 20-26

    (Liu Weidong, Yao Tongyu, Liu Xiangui, et al. Surfactant system imbibition. Beijing: Petroleum Industry Press, 2007: 20-26 (in Chinese))
    [51] 姚同玉, 李继山, 王建等. 裂缝性低渗透油藏的渗吸机理及有利条件. 吉林大学学报(工学版), 2009, 39(4): 937-940 (Yao Tongyu, Li Jishan, Wang Jian, et al. Imbibition mechanism and favorable conditions of fractured low-permeability reservoirs. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(4): 937-940 (in Chinese)
    [52] Standnes DC, Austad T. Wettability alteration in carbonates: Low-cost ammonium surfactants based on bioderivatives from the coconut palm as active chemicals to change the ettability form oil-wet to water-wet conditions. Colloids Surf. A: Physicochem. Eng. Aspects, 2003, 218(1-3): 161-173
    [53] 蔡建超, 郭士礼, 游利军等. 裂缝-孔隙型双重介质油藏渗吸机理的分形分析. 物理学报, 2013, 62(1): 228-232 (Cai Jianchao, Guo Shili, You Lijun, et al. Fractal analysis of the imbibition mechanism of fracture-porous dual-porosity reservoirs. Acta Physica Sinica, 2013, 62(1): 228-232 (in Chinese)
    [54] 孔祥言. 高等渗流力学. 合肥: 中国科学技术大学出版社, 1999: 606-616

    (Kong Xiangyan. Advanced Seepage Mechanics. Hefei: University of Science and Technology of China Press, 1999: 606-616 (in Chinese))
  • 加载中
图(23) / 表(2)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  62
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 录用日期:  2021-06-18
  • 修回日期:  2021-07-07
  • 网络出版日期:  2021-06-19
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回