EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转圆柱绕流流场特性分析

徐一航 陈少松

徐一航, 陈少松. 旋转圆柱绕流流场特性分析. 力学学报, 2021, 53(7): 1973-1984 doi: 10.6052/0459-1879-21-153
引用本文: 徐一航, 陈少松. 旋转圆柱绕流流场特性分析. 力学学报, 2021, 53(7): 1973-1984 doi: 10.6052/0459-1879-21-153
Xu Yihang, Chen Shaosong. Analysis of flow characteristics around a rotating cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1973-1984 doi: 10.6052/0459-1879-21-153
Citation: Xu Yihang, Chen Shaosong. Analysis of flow characteristics around a rotating cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1973-1984 doi: 10.6052/0459-1879-21-153

旋转圆柱绕流流场特性分析

doi: 10.6052/0459-1879-21-153
详细信息
    作者简介:

    徐一航, 博士研究生, 主要研究方向: 飞行器气动布局设计. E-mail: XYH805@njust.edu.cn

    陈少松, 研究员, 主要研究方向: 飞行器气动布局设计. E-mail: chenss805@njust.edu.cn

    通讯作者:

    陈少松

  • 中图分类号: O357.5

ANALYSIS OF FLOW CHARACTERISTICS AROUND A ROTATING CYLINDER

  • 摘要: 对雷诺数Re = 20000 ~ 90000、相对转速ɑ = 0 ~ 0.72的旋转圆柱后方流场进行了实验测量, 分析了旋转圆柱后方不同剖面处的速度分布规律和湍流度分布规律. 采用LES方法对旋转圆柱绕流问题进行了数值模拟, 分析旋转圆柱周围流场特性和自由剪切层变化规律, 最后通过理论模型对流场变化进行分析, 得出如下结论: 当圆柱逆时针旋转时, 同一雷诺数下随着相对转速的增加, 旋转圆柱尾迹区域下方速度突变处的位置随着相对转速的增加而上移, 而上方速度突变处的位置不变, 雷诺数的增加使旋转圆柱尾迹区域下方速度突变处位置有小幅度的下移. 通过数值模拟发现, 圆柱旋转之后, 圆柱后方下侧涡的位置明显上移, 且幅度较大. 下方的自由剪切层有明显的上移, 上方的自由剪切层位置变化较小. 最后通过理论分析发现, 圆柱后侧下方涡位置的上移对圆柱升力影响十分显著, 在高雷诺数、低相对转速的条件下, 旋转圆柱后侧下方涡位置的改变对旋转圆柱的升力、尾流区自由剪切层的变化起到了重要的影响.

     

  • 图  1  实验装置图

    Figure  1.  Experimental device

    图  2  旋转圆柱测量示意图

    Figure  2.  Schematic diagram of measuring a rotating cylinder

    图  3  Re = 20000时旋转圆柱后方4个剖面无量纲时均速度分布

    Figure  3.  Dimensionless time averaged velocity distribution of four sections behind the rotating cylinder when Re = 20000

    图  4  Re = 60000时旋转圆柱后方4个剖面无量纲时均速度分布

    Figure  4.  Dimensionless time averaged velocity distribution of four sections behind the rotating cylinder when Re = 60000

    图  5  ɑ = 0.2时旋转圆柱后方4个剖面无量纲时均速度分布

    Figure  5.  Dimensionless time averaged velocity distribution of four sections behind the rotating cylinder when ɑ = 0.2

    图  6  ɑ = 0.4时旋转圆柱后方4个剖面无量纲时均速度分布

    Figure  6.  Dimensionless time averaged velocity distribution of four sections behind the rotating cylinder when ɑ = 0.4

    图  7  Re = 20000时旋转圆柱后方4个剖面湍流强度

    Figure  7.  Turbulence intensity distribution of four sections behind the rotating cylinder when Re = 20000

    图  8  ɑ = 0.4时旋转圆柱后方4个剖面湍流强度

    Figure  8.  Turbulence intensity distribution of four sections behind the rotating cylinder when ɑ = 0.4

    图  9  (a) Re = 20000和(b) ɑ = 0.4时旋转圆柱后方上、下轮廓线湍流强度分布

    Figure  9.  Turbulence intensity distribution of upper and lower contour behind the rotating cylinder when (a) Re = 20000 and (b) ɑ = 0.4

    图  10  流动示意图

    Figure  10.  Schematic diagram

    图  11  网格示意图

    Figure  11.  Grid diagram

    图  12  Re = 60000, x/D = 1时不同亚格子模型计算结果对比图

    Figure  12.  Calculation results of different subgrid model when Re = 60000 and x/D = 1

    图  13  Re = 60000, x/D = 3时两种亚格子模型计算结果对比图

    Figure  13.  Calculation results of different Subgrid Model when Re = 60000 and x/D = 3

    图  14  Re = 20000, ɑ = 0时圆柱后方涡量图

    Figure  14.  Vorticity diagram behind cylinder at Re = 20000, ɑ = 0

    图  15  Re = 20000, ɑ = 0.72时圆柱后方涡量图

    Figure  15.  Vorticity diagram behind cylinder at Re = 20000, ɑ = 0.72

    图  16  Re = 20000, ɑ = 0时圆柱后方烟流图

    Figure  16.  Smoke plume behind cylinder at Re = 20000, ɑ = 0

    图  17  Re = 20000, ɑ = 0.78时圆柱后方烟流图

    Figure  17.  Smoke plume behind cylinder at Re = 20000, ɑ = 0.78

    图  18  Re = 20000, ɑ = 0.72时速度矢量图

    Figure  18.  Velocity vector diagram at Re = 20000, ɑ = 0.72

    图  19  ɑ = 0.4时不同雷诺数下圆柱表面(a)时均压力系数和(b)时均摩擦力系数分布

    Figure  19.  Distribution of (a) the average pressure coefficient and (b) the average wall shear stress coefficient on the cylinder surface under different Reynolds numbers when ɑ = 0.4

    图  20  单涡列

    Figure  20.  Single vortex column

    图  21  带有两个平行点涡列的有环量圆柱绕流

    Figure  21.  Circular cylinder with two parallel vortex column

    图  22  Re = 20000时旋转圆柱后方x/D = 1处理论模型与实验结果对比

    Figure  22.  Comparison of theoretical and experimental results at x/D = 1 behind a rotating cylinder when Re = 20000

    图  23  ɑ = 0.2时旋转圆柱后方x/D = 1处理论模型与实验结果对比

    Figure  23.  Comparison of theoretical and experimental results at x/D = 1 behind a rotating cylinder when ɑ = 0.2

    图  24  ɑ = 0.4时理论模型和LES升力计算结果对比

    Figure  24.  Comparison between theoretical and LES lift calculation results when ɑ = 0.4

    图  25  涡位置灵敏度分析

    Figure  25.  Sensitivity analysis of vortex position

    表  1  实验工况

    Table  1.   Experiment cases

    αω
    Re2000030000400005000060000700008000090000
    v6 9 12 15 18 21 24 27
    0.296 rad/s120 rad/s144 rad/s168 rad/s192 rad/s216 rad/s
    0.496 rad/s144 rad/s192 rad/s240 rad/s288 rad/s
    0.721650 rad/s
    下载: 导出CSV
  • [1] Hammache M, Gharib M. An experimental study of the parallel and oblique vortex shedding from circular cylinders. Journal of Fluid Mechanics, 1991, 232: 567-590 doi: 10.1017/S0022112091003804
    [2] Karniadakis GE, Triantafyllou GS. Three dimensional dynamics and transition to turbulence in the wake of bluff objects. Journal of Fluid Mechanics, 1992, 238: 1-30 doi: 10.1017/S0022112092001617
    [3] Barkley D, Henderson RD. Three dimensional Floquet stability analysis of the wake of a circular cylinder. Journal of Fluid Mechanics, 1996, 322: 215-241 doi: 10.1017/S0022112096002777
    [4] Thompson M, Hourigan K, Sheridan J. Three dimensional instabilities in the wake of a circular cylinder. Experimental Thermal and Fluid Science, 1996, 12: 190-196 doi: 10.1016/0894-1777(95)00098-4
    [5] Lam KM. Vortex shedding flow behind a slowly rotating circular cylinder. Journal of Fluids and Structures, 2009, 25(2): 245-262 doi: 10.1016/j.jfluidstructs.2008.04.005
    [6] Pralits J, Giannetti F, Brandt L. Three dimensional instability of the flow around a rotating circular cylinder. Journal of Fluid Mechanics, 2013, 730: 5-18 doi: 10.1017/jfm.2013.334
    [7] 张成健, 苏中地, 张洪军等. 并列旋转双圆柱流动特性的数值模拟. 水动力学研究与进展, 2009, 24(4): 463-471 (Zhang Chengjian, Zhang Hongjun, et al. Numerical simulation of the characteristics of flow around two rotating side-by-side circular cylinders. Chinese Journal of Hydrodynamics, 2009, 24(4): 463-471 (in Chinese)
    [8] Badra HM, Coutanceau M, Dennis SR. Unsteady flow past a rotating circular cylinder at Reynolds numbers 103 and 104. Journal of Fluid Mechanics, 1990, 220(7): 459-484
    [9] Zhao M, Thapa J, Cheng L, et al. Three dimensional transition of vortex shedding flow around a circular cylinder at right and oblique attacks. Physics of Fluids, 2013, 25: 14105 doi: 10.1063/1.4788934
    [10] Chang C, Chern R. Vortex shedding from an impulsively started rotating and translating circular cylinder. Physics of Fluids, 1991, 233: 265-298
    [11] Chew YT, Cheng M, Luo SC. A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme. Journal of Fluid Mechanics, 1995, 299: 35-71 doi: 10.1017/S0022112095003417
    [12] Catalano P, Wang M, Iaccarino G. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. International Journal of Heat and Fluid Flow, 2003, 24(4): 463-469 doi: 10.1016/S0142-727X(03)00061-4
    [13] Cantwell B, Coles D. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. Journal of Fluid Mechanics, 1983, 136: 321-374 doi: 10.1017/S0022112083002189
    [14] Stojkovic D, Breuer M, Durst F. Effect of high rotation rates on the laminar flow around a circular cylinder. Physics of Fluids, 2002, 14: 3160-3178 doi: 10.1063/1.1492811
    [15] Pralits JO, Brandt L, Giannetti F. Instability and sensitivity of the flow around a rotating circular cylinder. Journal of Fluid Mechanics, 2010, 650: 513-536 doi: 10.1017/S0022112009993764
    [16] Chou MH. Numerical study of vortex shedding from a rotating cylinder immersed in a uniform flow field. International Journal for Numerical Methods in Fluids, 2000, 32: 545-567 doi: 10.1002/(SICI)1097-0363(20000315)32:5<545::AID-FLD948>3.0.CO;2-2
    [17] Breuer M. A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow. International Journal of Heat and Fluid Flow, 2000, 21(5): 648-654 doi: 10.1016/S0142-727X(00)00056-4
    [18] Aljure DE, Rodriguez I, Lehmkuhl O, et al. Influence of rotation on the flow over a cylinder at Re = 5000. International Journal of Heat and Fluid Flow, 2015, 55: 76-90 doi: 10.1016/j.ijheatfluidflow.2015.07.015
    [19] Ray RK, Kalita JC. Higher-order-compact simulation of unsteady flow past a rotating cylinder at moderate Reynolds numbers. Computational and Applied Mathematics, 2016, 35: 219-250 doi: 10.1007/s40314-014-0191-2
    [20] Ezadi MJ, Rad AS, Khoshnevis AB. Features of the flow over a rotating circular cylinder at different spin ratios and Reynolds numbers: Experimental and numerical study. The European Physical Journal Plus, 2019: 134-189
    [21] 何颖, 杨新民, 陈志华. 高雷诺数圆柱绕流分离的旋转控制. 哈尔滨工程大学学报, 2016, 37(8): 1143-1150 (He Ying, Yang Xinmin, Chen Zhihua. Rotation control of high Reynolds number cylinder separation around flow. Journal of Harbin Engineering University, 2016, 37(8): 1143-1150 (in Chinese)
    [22] 何颖, 杨新民, 陈志华. 旋转圆柱绕流的流场特性. 船舶力学, 2015, 19(5): 501-508 (He Ying, Yang Xinmin, Chen Zhihua. Flow field characteristics of flow past a rotating cylinder. Journal of Ship Mechanics, 2015, 19(5): 501-508 (in Chinese) doi: 10.3969/j.issn.1007-7294.2015.05.004
    [23] Smith AC. On the stability of Foppl’s vortices. Journal of Applied Mechanics, 1973, 40(2): 610-612 doi: 10.1115/1.3423036
    [24] Zdravkovich MM. Flow around circular cylinders: Fundamentals. Journal of Fluid Mechanics, 1997, 1: 216-219
    [25] Graham MR. Flow around circular cylinders: Applications. Journal of Fluids and Structures, 2004, 18: 146-148
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  10
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 录用日期:  2021-05-13
  • 网络出版日期:  2021-05-13

目录

    /

    返回文章
    返回

    重要通知

    近日,本刊多次接到来电,称有不法网站冒充《力学学报》杂志官网,并向投稿人收取高额审稿费用。在此,我们郑重申明:

    1.《力学学报》官方网站(https://lxxb.cstam.org.cn/)是本刊唯一的投稿渠道,《力学学报》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

    2.《力学学报》在稿件录用前不以任何形式向作者收取包括审稿费、中介费等在内的任何费用!请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62536271。

    感谢大家多年来对《力学学报》的支持与厚爱,欢迎继续关注我们!