STUDY ON INSTABILITY MECHANISM AND EVOLUTION MODEL OF PROPELLER TIP VORTICES
-
摘要: 螺旋桨尾流场的涡流特性是一个基础但又十分复杂的流体力学问题, 它的复杂性源于其蕴含复杂的漩涡系统, 且该漩涡系统会在高速的剪切层流动中不断演化, 其流体动力学行为, 如由稳定态演变为不稳定态的机理以及复杂工况环境中的流动现象, 一直是流体力学领域的难点和备受关注的热点问题. 从工程应用的角度看, 桨后梢涡的演化特性与船舶结构物的宏观特性直接相关, 更好地理解多工况下螺旋桨尾流的动力学特性, 将有助于改善与振动、噪声以及结构问题等相关的推进器性能, 对综合性能优良的下一代螺旋桨的设计和优化有着重要的现实意义. 本文基于延迟分离涡模拟、大涡模拟和无湍流模型模拟方法以及粒子图像测速流场测试分别开展了螺旋桨尾流动力学特性的数值与试验研究, 对螺旋桨尾流不稳定性的触发机理进行了揭示. 基于均匀来流中螺旋桨梢涡的演化机理, 提出了螺旋桨梢涡演化模型. 该模型能够较为准确地模拟螺旋桨梢涡的演化过程, 预测螺旋桨梢涡融合的时间和位置, 对螺旋桨流噪声预报和控制以及性能优良的螺旋桨设计具有重要意义.Abstract: The propeller wake dynamics is a fundamental but very complicated fluid mechanics problem. Its complexity comes from its sophisticated vortex system, which keeps evolving in high-speed shear layer flow. The mechanism of propeller wake behaviors such as the evolution from stable regime to unstable regime and the flow phenomenon in a complex operating environment have always been difficult and hot topics in the field of fluid mechanics. From the perspective of engineering applications, propeller wakes are directly related to the macroscopic characteristics of marine structures, a better understanding of the dynamic characteristic of the propeller wake under multiple operating conditions helps to improve the propulsion performance related to vibration, noise, and structure problems and has important practical significance for the design and optimization of next-generation propellers with good comprehensive performance. In this paper, the propeller wake dynamics are analyzed numerically using DDES, LES and NTM methods and experimentally based on PIV flow measurements, and the triggering mechanism of the instability of the propeller wake is revealed. Based on the evolution mechanism of the tip vortex in the uniform inflow, an evolution model of the tip vortices is proposed. The proposed model can accurately reproduce the evolution process of propeller tip vortex, predict the instant and position of tip vortex merging, which is of great significance to the prediction and control of propeller flow noise and the design of propellers with excellent performance.
-
表 1 E1658螺旋桨的几何参数
Table 1. Main parameters of E1658 propeller
Parameters Unit Value diameter mm 250 number of blades − 7 hub/diameter ratio − 0.227 chord at 0.95R mm 6.8 表 2 螺旋桨网格系统
Table 2. Details of the grid system for the propeller
Grid Size Grid points/103 Grid type shaft 241 $ \times $ 91 $ \times $ 241 5285 O blades 7 $ \times $ 241 $ \times $ 61 $ \times $ 181 7 $ \times $ 2661 O tips 7 $ \times $ 145 $ \times $ 61 $ \times $ 101 7 $ \times $ 893 wrapped Ref1 603 $ \times $ 251 $ \times $ 251 37 990 cartesian Ref2 1141 $ \times $ 101 $ \times $ 1081 124 576 cylindrical total − 192 730 − -
[1] Long Y, Long X, Ji B, et al. Numerical simulations of cavitating turbulent flow around a marine propeller behind the hull with analyses of the vorticity distribution and particle tracks. Ocean Engineering, 2019, 189: 106310 doi: 10.1016/j.oceaneng.2019.106310 [2] 谢庆墨, 陈亮, 张桂勇等. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报, 2020, 52(4): 1045-1054 (Xie Qingmo, Chen Liang, Zhang Guiyong, et al. Analysis of unsteady cavitation flowover hydrofoil based on dynamic mode decomposition. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1045-1054 (in Chinese) [3] Wang L, Guo C, Su Y, et al. Numerical analysis of a propeller during heave motion in cavitating flow. Applied Ocean Research, 2017, 66: 131-145 doi: 10.1016/j.apor.2017.05.001 [4] Guo H, Zou Z, Wang F, et al. Numerical investigation on the asymmetric propeller behavior of a twin-screw ship during maneuvers by using RANS method. Ocean Engineering, 2020, 200: 107083 doi: 10.1016/j.oceaneng.2020.107083 [5] Wang L, Guo C, Xu P, et al. Analysis of the wake dynamics of a propeller operating before a rudder. Ocean Engineering, 2019, 188: 106250 doi: 10.1016/j.oceaneng.2019.106250 [6] 郭春雨, 徐鹏, 韩阳等. 自由面对潜艇尾流场流动特性影响研究. 力学学报, 2021, 53(1): 156-167 (Guo Chunyu, Xu Peng, Han Yang, et al. Research on the influence of free surface on the flow characteristics of submarine wake. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 156-167 (in Chinese) [7] Wang LZ, Guo CY, Su YM, et al. A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(2): 212-224 doi: 10.1016/j.ijnaoe.2017.07.001 [8] Wang L, Guo C, Xu P, et al. Analysis of the performance of an oscillating propeller in cavitating flow. Ocean Engineering, 2018, 164: 23-39 doi: 10.1016/j.oceaneng.2018.06.036 [9] 李聪洲, 张新曙, 胡晓峰等. 高雷诺数下多柱绕流特性研究. 力学学报, 2018, 50(2): 233-243 (Li Congzhou, Zhang Xinshu, Hu Xiaofeng, et al. The study of flow past multiple cylinders at high Reynolds numbers. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 233-243 (in Chinese) [10] 时北极, 何国威, 王士召. 基于滑移速度壁模型的复杂边界湍流大涡模拟. 力学学报, 2019, 51(3): 754-766 (Shi Beiji, He Guowei, Wang Shizhao. Large-eddy simulation of flows with complex geometries by using the slip-wall model. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 754-766 (in Chinese) [11] Muscari R, Mascio AD, Verzicco R. Modeling of vortex dynamics in the wake of a marine propeller. Computers & Fluids, 2013, 73(73): 65-79 [12] Di MA, Muscari R, Dubbioso G. On the wake dynamics of a propeller operating in drift. Journal of Fluid Mechanics, 2014, 754(9): 263-307 [13] 强光林, 杨易, 陈阵等. 基于车身绕流的低雷诺数湍流模型改进研究. 力学学报, 2020, 52(5): 1371-1382 (Qiang Guanglin, Yang Yi, Chen Zhen, et al. Research on improvements of LRN turbulence model based on flow around automobile body. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1371-1382 (in Chinese) [14] 王巍, 唐滔, 卢盛鹏等. 主动射流控制水翼空化的数值模拟与分析. 力学学报, 2019, 51(6): 1752-1760 (Wang Wei, Tang tao, Lu Shengpeng, et al. Numerical simulation and analysis of active jet control of hydrofoil cavitation. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1752-1760 (in Chinese) [15] Dubbioso G, Muscari R, Mascio AD. Analysis of the performances of a marine propeller operating in oblique flow. Computers & Fluids, 2013, 75(6): 86-102 [16] Jang, H, Mahesh, K. Large eddy simulation of flow around a reverse rotating propeller. Journal of Fluid Mechanics, 2013, 729: 151-179 [17] Kumar P, Mahesh K. Large eddy simulation of propeller wake instabilities. Journal of Fluid Mechanics, 2017, 814: 361-396 doi: 10.1017/jfm.2017.20 [18] Verma A, Jang H, Mahesh K. The effect of an upstream hull on a propeller in reverse rotation. Journal of Fluid Mechanics, 2012, 704(2): 61-88 [19] Chase N, Carrica PM. Submarine propeller computations and application to self-propulsion of DARPA Suboff. Ocean Engineering, 2013, 60(2): 68-80 [20] Zhu Z. Numerical study on characteristic correlation between cavitating flow and skew of ship propellers. Ocean Engineering, 2015, 99: 63-71 doi: 10.1016/j.oceaneng.2014.12.023 [21] 朱志峰, 方世良, 王晓燕. 空化螺旋桨非定常粘性流场特征分析. 中国科学: 技术科学, 2011, 41(2): 213-222 (Zhu Zhifeng, Fang Shiliang, Wang Xiaoyan. Characteristic analysis of unsteady viscous flow around a caviatating propeller. Scientia Sinica Technologica, 2011, 41(2): 213-222 (in Chinese) doi: 10.1360/ze2011-41-2-213 [22] 胡健, 马骋, 黄胜等. 螺旋桨尾流场的数值分析. 哈尔滨工程大学学报, 2008, 29(12): 1255-1260 (Hu Jian, Ma Cheng, Huang Sheng, et al. Numerical analysis of flow fields behind propellers. Journal of Harbin Engineering University, 2008, 29(12): 1255-1260 (in Chinese) doi: 10.3969/j.issn.1006-7043.2008.12.001 [23] Felli M, Falchi M. A parametric survey of propeller wake instability mechanisms by detailed flow measurement and time resolved visualizations//Proceedings of the 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany. 2018: 5-10. [24] 高天达, 孙姣, 范赢等. 基于PIV技术分析颗粒在湍流边界层中的行为. 力学学报, 2019, 51(1): 103-110 (Gao Tianda, Sun Jiao, Fan Yin, et al. PIV experimental investigation on the behavior of particle in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 103-110 (in Chinese) [25] 田海平, 伊兴睿, 钟山等. 基于Stereo-PIV技术的三维发卡涡结构定量测量研究. 力学学报, 2020, 52(6): 1666-1677 (Tian Haiping, Yi Xingrui, Zhong Shan, et al. Experimental study on quantitative measurement of three-dimensional structure of hairpin vortex by Stereo-PIV. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1666-1677 (in Chinese) [26] Felli M, Camussi R, Di Felice F. Mechanisms of evolution of the propeller wake in the transition and far fields. Journal of Fluid Mechanics, 2011, 682: 5-53 doi: 10.1017/jfm.2011.150 [27] Wang L, Carrica PM, Felli M. Experimental and CFD study of the streamwise evolution of propeller tip vortices//33rd Symposium on Naval Hydrodynamics, 2020. [28] Li J, Carrica PM. An approach to couple velocity/pressure/void fraction in two-phase flows with incompressible liquid and compressible bubbles. International Journal of Multiphase Flow, 2018, 102: 77-94 doi: 10.1016/j.ijmultiphaseflow.2018.01.021 [29] Carrica PM, Wilson RV, Noack RW, et al. Ship motions using single-phase level set with dynamic overset grids. Computers & Fluids, 2007, 36(9): 1415-1433 [30] Wang L, Martin JE, Felli M, et al. Experiments and CFD for the propeller wake of a generic submarine operating near the surface. Ocean Engineering, 2020, 206: 107304 doi: 10.1016/j.oceaneng.2020.107304 [31] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1760-1765 doi: 10.1063/1.857955 [32] Meunier P, Leweke T. Three-dimensional instability during vortex merging. Physics of Fluids, 2001, 13(10): 2747-2750 doi: 10.1063/1.1399033 [33] Wang L, Guo C, Wang C, et al. Modified phase average algorithm for the wake of a propeller. Physics of Fluids, 2021, 33(3): 035146 doi: 10.1063/5.0030829 -