EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋桨梢涡不稳定性机理与演化模型研究

王恋舟 吴铁成 郭春雨

王恋舟, 吴铁成, 郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究. 力学学报, 2021, 0(0): 1-12 doi: 10.6052/0459-1879-21-151
引用本文: 王恋舟, 吴铁成, 郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究. 力学学报, 2021, 0(0): 1-12 doi: 10.6052/0459-1879-21-151
Wang Lianzhou, Wu Tiecheng, Guo Chunyu. Study on instability mechanism and evolution model of propeller tip vortices. Chinese Journal of Theoretical and Applied Mechanics, 2021, 0(0): 1-12 doi: 10.6052/0459-1879-21-151
Citation: Wang Lianzhou, Wu Tiecheng, Guo Chunyu. Study on instability mechanism and evolution model of propeller tip vortices. Chinese Journal of Theoretical and Applied Mechanics, 2021, 0(0): 1-12 doi: 10.6052/0459-1879-21-151

螺旋桨梢涡不稳定性机理与演化模型研究

doi: 10.6052/0459-1879-21-151
基金项目: 中央高校基本科研业务费科技创新项目资助(2682021CX080)
详细信息
    作者简介:

    王恋舟, 讲师, 主要研究方向: 计算流体力学. E-mail: lianzhou-wang@swjtu.edu.cn

  • 中图分类号: O357.5

STUDY ON INSTABILITY MECHANISM AND EVOLUTION MODEL OF PROPELLER TIP VORTICES

Funds: The project was supported by the Fundamental Research Funds For Central Universities (Grant NO. 2682021CX080)
  • 摘要: 螺旋桨尾流场的涡流特性是一个基础但又十分复杂的流体力学问题, 它的复杂性源于其蕴含复杂的漩涡系统, 且该漩涡系统会在高速的剪切层流动中不断演化, 其流体动力学行为, 如由稳定态演变为不稳定态的机理以及复杂工况环境中的流动现象, 一直是流体力学领域的难点和备受关注的热点问题. 从工程应用的角度看, 桨后梢涡的演化特性与船舶结构物的宏观特性直接相关, 更好地理解多工况下螺旋桨尾流的动力学特性, 将有助于改善与振动、噪声以及结构问题等相关的推进器性能, 对综合性能优良的下一代螺旋桨的设计和优化有着重要的现实意义. 本文基于延迟分离涡模拟、大涡模拟和无湍流模型模拟方法以及粒子图像测速流场测试分别开展了螺旋桨尾流动力学特性的数值与试验研究, 对螺旋桨尾流不稳定性的触发机理进行了揭示. 并基于均匀来流中螺旋桨梢涡的演化机理, 提出了螺旋桨梢涡演化模型, 该模型能够较为准确地模拟螺旋桨梢涡的演化过程, 预测螺旋桨梢涡融合的时间和位置, 对螺旋桨流噪声预报和控制以及性能优良的螺旋桨设计具有重要意义.

     

  • 图  1  E1658螺旋桨

    Figure  1.  E1658 propeller

    图  2  粒子图像测速测量的试验设置草图

    Figure  2.  The sketch of the experimental setup for PIV measurements

    图  3  敞水条件下E1658螺旋桨的计算网格

    Figure  3.  Grids for propeller E1658 in open water condition

    图  4  不同工况下的相平均涡量场

    Figure  4.  Phase-averaged out-of-plane vorticity at different loading conditions

    图  5  试验结果三维梢涡结构的插值方法

    Figure  5.  Interpolation methods for calculating 3D tip vortex structures of experiments

    图  6  不同工况下相平均三维涡结构

    Figure  6.  Three-dimensional phase-averaged vortical structures at different loading conditions

    图  7  不同工况下瞬态涡结构

    Figure  7.  Instantaneous vortical structures at different conditions

    图  8  梢涡合并过程, Q = 10000

    Figure  8.  Tip vortex merging process. Isodurfaces of Q = 10000

    图  9  不同工况下梢涡不稳定性触发过程

    Figure  9.  Instability inception process of tip vortices under different conditions

    图  10  螺旋桨尾流结构

    Figure  10.  Structure of propeller wake

    图  11  螺旋桨下游不同涡龄梢涡

    Figure  11.  Downstream tip vortices with different ages

    图  12  两个涡之间的诱导速度分解

    Figure  12.  The induced velocity decomposition between two vortices

    图  13  初始漩涡系统配置草图

    Figure  13.  Sketch of the initial configuration of vortex system

    图  14  演化模型的计算策略

    Figure  14.  Computation strategy of the evolution model

    图  15  采用模型预报得到的J = 0.56和J = 0.74时的瞬态漩涡系统

    Figure  15.  Instantaneous vortex system predicted by proposed model at J = 0.56 and J = 0.74

    表  1  E1658螺旋桨的几何参数

    Table  1.   Main parameters of E1658 propeller

    ParametersUnitValue
    diametermm250
    number of blades7
    hub/diameter ratio0.227
    chord at 0.95Rmm6.8
    下载: 导出CSV

    表  2  螺旋桨网格系统

    Table  2.   Details of the grid system for the propeller

    GridSizeGrid points/103Grid type
    shaft241 $ \times $ 91 $ \times $ 2415285‘O’
    blades7 $ \times $ 241 $ \times $ 61 $ \times $ 1817 $ \times $ 2661‘O’
    tips7 $ \times $ 145 $ \times $ 61 $ \times $ 1017 $ \times $ 893wrapped
    Ref[1]603 $ \times $ 251 $ \times $ 25137 990cartesian
    Ref[2]1141 $ \times $ 101 $ \times $ 1081124 576cylindrical
    total192 730
    下载: 导出CSV
  • [1] Long Y, Long X, Ji B, et al. Numerical simulations of cavitating turbulent flow around a marine propeller behind the hull with analyses of the vorticity distribution and particle tracks. Ocean Engineering, 2019, 189: 106310 doi: 10.1016/j.oceaneng.2019.106310
    [2] 谢庆墨, 陈亮, 张桂勇等. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报, 2020, 52(04): 1045-1054 (Xie Qingmo, Chen Liang, Zhang Guiyong, et al. Analysis of unsteady cavitation flowover hydrofoil based on dynamic mode decomposition. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(04): 1045-1054 (in Chinese)
    [3] Wang L, Guo C, Su Y, et al. Numerical analysis of a propeller during heave motion in cavitating flow. Applied Ocean Research, 2017, 66: 131-145 doi: 10.1016/j.apor.2017.05.001
    [4] Guo H, Zou Z, Wang F, et al. Numerical investigation on the asymmetric propeller behavior of a twin-screw ship during maneuvers by using RANS method. Ocean Engineering, 2020, 200: 107083 doi: 10.1016/j.oceaneng.2020.107083
    [5] Wang L, Guo C, Xu P, et al. Analysis of the wake dynamics of a propeller operating before a rudder. Ocean Engineering, 2019, 188: 106250 doi: 10.1016/j.oceaneng.2019.106250
    [6] 郭春雨, 徐鹏, 韩阳等. 自由面对潜艇尾流场流动特性影响研究. 力学学报, 2021, 53(1): 156-167 (Guo Chunyu, Xu Peng, Han Yang, et al. Research on the influence of free surface on the flow characteristics of submarine wake. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 156-167 (in Chinese)
    [7] Wang LZ, Guo CY, Su YM, et al. A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(2): 212-224 doi: 10.1016/j.ijnaoe.2017.07.001
    [8] Wang L, Guo C, Xu P, et al. Analysis of the performance of an oscillating propeller in cavitating flow. Ocean Engineering, 2018, 164: 23-39 doi: 10.1016/j.oceaneng.2018.06.036
    [9] 李聪洲, 张新曙, 胡晓峰等. 高雷诺数下多柱绕流特性研究. 力学学报, 2018, 50(2): 233-243 (Li Congzhou, Zhang Xinshu, Hu Xiaofeng, et al. The Study of Flow Past Multiple Cylinders at High Reynolds Numbers. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 233-243 (in Chinese)
    [10] 时北极, 何国威, 王士召. 基于滑移速度壁模型的复杂边界湍流大涡模拟. 力学学报, 2019, 51(3): 754-766 (Shi Beiji, He Guowei, Wang Shizhao. Large-Eddy Simulation of Flows with Complex Geometries by Using The Slip-Wall Model. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 754-766 (in Chinese)
    [11] Muscari R, Mascio A D, Verzicco R. Modeling of vortex dynamics in the wake of a marine propeller. Computers & Fluids, 2013, 73(73): 65-79
    [12] Di M A, Muscari R, Dubbioso G. On the wake dynamics of a propeller operating in drift. Journal of Fluid Mechanics, 2014, 754(9): 263-307
    [13] 强光林, 杨易, 陈阵等. 基于车身绕流的低雷诺数湍流模型改进研究. 力学学报, 2020, 52(5): 1371-1382 (Qiang Guanglin, Yang Yi, Chen Zhen, et al. Research on improvements of LRN turbulence model based on flow around automobile body. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1371-1382 (in Chinese)
    [14] 王巍, 唐滔, 卢盛鹏等. 主动射流控制水翼空化的数值模拟与分析. 力学学报, 2019, 51(6): 1752-1760 (Wang Wei, Tang tao, Lu Shengpeng, et al. Numerical simulation and analysis of active jet control of hydrofoil cavitation. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1752-1760 (in Chinese)
    [15] Dubbioso G, Muscari R, Mascio A D. Analysis of the performances of a marine propeller operating in oblique flow. Computers & Fluids, 2013, 75(6): 86-102
    [16] Jang, H, Mahesh, K. Large eddy simulation of flow around a reverse rotating propeller. Journal of Fluid Mechanics, 2013, 729(729): 151-179
    [17] Kumar P, Mahesh K. Large eddy simulation of propeller wake instabilities. Journal of Fluid Mechanics, 2017, 814: 361-396 doi: 10.1017/jfm.2017.20
    [18] Verma A, Jang H, Mahesh K. The effect of an upstream hull on a propeller in reverse rotation. Journal of Fluid Mechanics, 2012, 704(2): 61-88
    [19] Chase N, Carrica P M. Submarine propeller computations and application to self-propulsion of DARPA Suboff. Ocean Engineering, 2013, 60(2): 68-80
    [20] Zhu Z. Numerical study on characteristic correlation between cavitating flow and skew of ship propellers. Ocean Engineering, 2015, 99: 63-71 doi: 10.1016/j.oceaneng.2014.12.023
    [21] 朱志峰, 方世良, 王晓燕. 空化螺旋桨非定常粘性流场特征分析. 中国科学: 技术科学, 2011, 41(2): 213-222 (Zhu Zhifeng, Fang Shiliang, Wang Xiaoyan. Characteristic analysis of unsteady viscous flow around a caviatating propeller. Scientia Sinica Technologica, 2011, 41(2): 213-222 (in Chinese) doi: 10.1360/ze2011-41-2-213
    [22] 胡健, 马骋, 黄胜等. 螺旋桨尾流场的数值分析. 哈尔滨工程大学学报, 2008, 29(12): 1255-1260 (Hu Jian, Ma Cheng, Huang Sheng, et al. Numerical analysis of flow fields behind propellers. Journal of Harbin Engineering University, 2008, 29(12): 1255-1260 (in Chinese) doi: 10.3969/j.issn.1006-7043.2008.12.001
    [23] Felli M, Falchi M. A parametric survey of propeller wake instability mechanisms by detailed flow measurement and time resolved visualizations//Proceedings of the 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany. 2018: 5-10.
    [24] 高天达, 孙姣, 范赢等. 基于PIV技术分析颗粒在湍流边界层中的行为. 力学学报, 2019, 51(1): 103-110 (Gao Tianda, Sun Jiao, Fan Yin, et al. PIV experimental investigation on the behavior of particle in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 103-110 (in Chinese)
    [25] 田海平, 伊兴睿, 钟山等. 基于Stereo-PIV技术的三维发卡涡结构定量测量研究. 力学学报, 2020, 52(6): 1666-1677 (Tian Haiping, Yi Xingrui, Zhong Shan, et al. Experimental study on quantitative measurement of three-dimensional structure of hairpin vortex by Stereo-PIV. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1666-1677 (in Chinese)
    [26] Felli M, Camussi R, Di Felice F. Mechanisms of evolution of the propeller wake in the transition and far fields. Journal of Fluid Mechanics, 2011, 682: 5 doi: 10.1017/jfm.2011.150
    [27] Wang L, Carrica PM, Felli M. Experimental and CFD study of the streamwise evolution of propeller tip vortices//The 33rd Symposium on Naval Hydrodynamics, 2020.
    [28] Li J, Carrica P M. An approach to couple velocity/pressure/void fraction in two-phase flows with incompressible liquid and compressible bubbles. International Journal of Multiphase Flow, 2018, 102: 77-94 doi: 10.1016/j.ijmultiphaseflow.2018.01.021
    [29] Carrica P M, Wilson R V, Noack R W, et al. Ship motions using single-phase level set with dynamic overset grids. Computers & fluids, 2007, 36(9): 1415-1433
    [30] Wang L, Martin J E, Felli M, et al. Experiments and CFD for the propeller wake of a generic submarine operating near the surface. Ocean Engineering, 2020, 206: 107304 doi: 10.1016/j.oceaneng.2020.107304
    [31] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1760-1765 doi: 10.1063/1.857955
    [32] Meunier P, Leweke T. Three-dimensional instability during vortex merging. Physics of Fluids, 2001, 13(10): 2747-2750 doi: 10.1063/1.1399033
    [33] Wang L, Guo C, Wang C, et al. Modified phase average algorithm for the wake of a propeller. Physics of Fluids, 2021, 33(3): 035146 doi: 10.1063/5.0030829
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 录用日期:  2021-06-11
  • 网络出版日期:  2021-06-11

目录

    /

    返回文章
    返回

    重要通知

    近日,本刊多次接到来电,称有不法网站冒充《力学学报》杂志官网,并向投稿人收取高额审稿费用。在此,我们郑重申明:

    1.《力学学报》官方网站(https://lxxb.cstam.org.cn/)是本刊唯一的投稿渠道,《力学学报》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

    2.《力学学报》在稿件录用前不以任何形式向作者收取包括审稿费、中介费等在内的任何费用!请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62536271。

    感谢大家多年来对《力学学报》的支持与厚爱,欢迎继续关注我们!