EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体颗粒对沟槽湍流边界层影响的实验研究

严冬 孙姣 高天达 陈丕 成雨霆 陈文义

严冬, 孙姣, 高天达, 陈丕, 成雨霆, 陈文义. 固体颗粒对沟槽湍流边界层影响的实验研究. 力学学报, 2021, 53(8): 2279-2288 doi: 10.6052/0459-1879-21-149
引用本文: 严冬, 孙姣, 高天达, 陈丕, 成雨霆, 陈文义. 固体颗粒对沟槽湍流边界层影响的实验研究. 力学学报, 2021, 53(8): 2279-2288 doi: 10.6052/0459-1879-21-149
Yan Dong, Sun Jiao, Gao Tianda, Chen Pi, Cheng Yuting, Chen Wenyi. Experimental study on the effect of solid particles on riblet-plate turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2279-2288 doi: 10.6052/0459-1879-21-149
Citation: Yan Dong, Sun Jiao, Gao Tianda, Chen Pi, Cheng Yuting, Chen Wenyi. Experimental study on the effect of solid particles on riblet-plate turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2279-2288 doi: 10.6052/0459-1879-21-149

固体颗粒对沟槽湍流边界层影响的实验研究

doi: 10.6052/0459-1879-21-149
基金项目: 国家自然科学基金(11572357, 11602077), 河北省自然科学基金(A2021202009)资助项目
详细信息
    作者简介:

    陈文义, 教授, 主要研究方向: 实验流体力学. E-mail: cwy63@hebut.edu.cn

  • 中图分类号: O357.5+2

EXPERIMENTAL STUDY ON THE EFFECT OF SOLID PARTICLES ON RIBLET-PLATE TURBULENT BOUNDARY LAYER

  • 摘要: 本文采用粒子图像测速技术(particles image velocimetry, PIV)研究固体颗粒对放置在平板湍流边界层中的平壁和沟槽壁面减阻效果的影响. 实验对清水和加入粒径为155 μm聚苯乙烯颗粒的流法向二维速度场信息进行采集, 对不同工况下的平均速度剖面、雷诺应力和湍流度等统计量进行对比, 分析流体在边界层中的行为. 运用空间局部平均结构函数提取了不同工况湍流边界层喷射−扫掠行为的空间拓扑结构并进行比较. 结果发现, 在不同的壁面条件下, 粒子加入后的对数律区中无量纲速度均略大于清水组, 雷诺切应力有所降低, 湍流度有所减弱. 对于不同流场速度下的沟槽而言, 颗粒的加入均降低了壁面附近的阻力, 而颗粒单独作用于光滑壁面的减阻效果并不明显. 加入粒子后的相干结构数目有所增加, 法向脉动速度下降. 沟槽壁面附近的相干结构数目有所增加, 法向脉动速度在自由来流速度较大时有所上升, 在速度较小时有所下降. 这表明不同减阻状况下的沟槽均能将大涡破碎成更多的涡, 并且粒子的加入强化了这种破碎作用.

     

  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental facility

    图  2  沟槽板示意图(单位: mm)

    Figure  2.  Schemetic diagram of riblet plate (unit: mm)

    图  3  不同来流速度下流向平均速度剖面

    Figure  3.  Streamwise mean velocity profiles at different velocity

    图  4  不同来流速度下湍流度分布曲线

    Figure  4.  Distribution of the turbulence intensity at different velocity

    图  5  不同来流速度下雷诺切应力分布曲线

    Figure  5.  Distribution of the Reynolds shear stress at different velocity

    6  U = 0.205 m/s时不同工况下的喷射法向脉动速度云图

    6.  Contours of the normal fluctuating velocity around eject at U = 0.205 m/s

    图  6  U = 0.205 m/s时不同工况下的喷射法向脉动速度云图(续)

    Figure  6.  Contours of the normal fluctuating velocity around eject at U = 0.205 m/s (continued)

    图  7  U = 0.280 m/s时不同工况下的喷射法向脉动速度云图

    Figure  7.  Contours of the normal fluctuating velocity around eject at U = 0.205 m/s

    图  8  U = 0.205 m/s时不同工况下的扫掠法向脉动速度云图

    Figure  8.  Contours of the normal fluctuating velocity around eject at U = 0.205 m/s

    图  9  U = 0.280 m/s时不同工况下的喷射法向脉动速度云图

    Figure  9.  Contours of the normal fluctuating velocity around eject at U = 0.280 m/s

    图  10  不同来流速度下扫掠数目沿法向分布规律

    Figure  10.  Distributions of the number of sweep along normal-wall positions

    表  1  不同工况下的减阻效果对比

    Table  1.   Drag reduction under different working condition

    U/(m·s−1)u*/(m·s−1)DR/%DR*/%
    clean water smooth wall0.2050.0088
    clean water riblet wall0.2050.00848.888.88
    particles
    smooth wall
    0.2050.00864.49
    particles
    riblet wall
    0.2050.008111.2815.31
    clean water smooth wall0.2800.0115
    clean water riblet wall0.2800.0117−3.51−3.51
    particles
    smooth wall
    0.2800.01150
    particles
    riblet wall
    0.2800.01125.435.43
    下载: 导出CSV
  • [1] 郭杰, 耿兴国, 高鹏等. 边界层控制法减阻技术研究进展. 鱼雷技术, 2008, 16(1): 1-6 (Guo Jie, Geng Xingguo, Gao Peng, et al. Recent development of drag reduction technologies via boundary layer control. Torpedo Technology, 2008, 16(1): 1-6 (in Chinese)
    [2] Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philos. Trans. A Math. Phys. Eng., 2010, 368(1929): 4775-4806
    [3] Walsh MJ. Riblets as a viscous drag reduction technique. AIAA Journal, 1983, 21(4): 485-486 doi: 10.2514/3.60126
    [4] Walsh MJ. Turbulent boundary layer drag reduction using riblets//AIAA, Aerospace Sciences Meeting, Orlando: Florida, 1982.
    [5] Walsh MJ, Weinstein LM. Drag and heat transfer on surfaces with small longitudinal fins. AIAA Paper 78-1161
    [6] Walsh MJ, Lindemann AM. Optimization and application of riblets for turbulent drag reduction//AIAA, Aerospace Sciences Meeting, Reno: Nevada, 1984.
    [7] Bechert DW, Bartenwerfer M. The viscous flow on surfaces with longitudinal ribs. Journal of Fluid Mechanics, 1989, 206: 105-129 doi: 10.1017/S0022112089002247
    [8] Bechert DW, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 1997, 338: 59-87 doi: 10.1017/S0022112096004673
    [9] Jing C, Fu Y. A numerical study on pressure drop in microchannel flow with different bionic micro-grooved surfaces. Journal of Bionic Engineering, 2012, 9(1): 99-109 doi: 10.1016/S1672-6529(11)60102-9
    [10] García-Mayoral R, Jiménez J. Hydrodynamic stability and breakdown of the viscous regime over riblets. Journal of Fluid Mechanics, 2011, 678: 317-347 doi: 10.1017/jfm.2011.114
    [11] Bechert DW, Bartenwerfer M, Hoppe G. Turbulent drag reduction by nonplanar surfaces−A survey on the research at TU/DLR Berlin//Structure of Turbulence & Drag Reduction IUTAM Symposium, Zürich. DLR, 1990: 525-543
    [12] Goldstein DB, Tuan TC. Secondary flow induced by riblets. Journal of Fluid Mechanics, 1998, 363(1998): 115-151
    [13] Bechert DW, Bruse M, Hage W, et al. Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften, 2000, 87(4): 157-171 doi: 10.1007/s001140050696
    [14] Lee SJ, Lee SH. Flow field analysis of a turbulent boundary layer over a riblet surface. Experiments in Fluids, 2001, 30(2): 153-166 doi: 10.1007/s003480000150
    [15] Ng JH, Jaiman RK, Lim TT. Direct numerical simulations of riblets in a fully-developed turbulent channel flow: Effects of geometry. in: Advances in Computation, Modeling and Control of Transitional and Turbulent Flows. Sengupta TK, Lele SK, Sreenivasan KR, et al. edited, World Scientific, 2016: 155-165
    [16] Martin S, Bhushan B. Modeling and optimization of shark-inspired riblet geometries for low drag applications. Journal of Colloid and Interface Science, 2016, 474: 206-215
    [17] Okabayashi K, Hirai K, Takeuchi S, et al. Direct numerical simulation of turbulent flow above zigzag riblets. AIP Advances, 2018, 8(10): 1-20
    [18] 李思成, 吴迪, 崔光耀等. 低雷诺数沟槽表面湍流/非湍流界面特性的实验研究. 力学学报, 2020, 52(6): 1632-1644 (Li Sicheng, Wu Di, Cui Guangyao, et al. Experimental study on properties of turbulent/non-turbulent interface over riblets surfaces at low Reynolds numbers. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1632-1644 (in Chinese)
    [19] Bixler GD, Bharat B. Shark skin inspired low-drag microstructured surfaces in closed channel flow. Journal of Colloid & Interface Science, 2013, 393: 384-396
    [20] Hou J, Hokmabad BV, Ghaemi S. Three-dimensional measurement of turbulent flow over a riblet surface. Experimental Thermal and Fluid Science, 2017, 85: 229-239 doi: 10.1016/j.expthermflusci.2017.03.006
    [21] Gore RA, Crowe CT. Modulation of turbulence by a dispersed phase. Journal of Fluids Engineering-Transactions of the ASME, 1991, 113: 304-307 doi: 10.1115/1.2909497
    [22] Noguchi K, Nezu I. Particle–turbulence interaction and local particle concentration in sediment-laden open-channel flows. Journal of Hydro-environment Research, 2010, 3(2): 54-68
    [23] Montante G, Paglianti A, Magelli F. Analysis of dilute solid–liquid suspensions in turbulent stirred tanks. Chemical Engineering Research & Design, 2012, 90(10): 1448-1456
    [24] 高天达, 孙姣, 范赢等. 基于PIV技术分析颗粒在湍流边界层中的行为. 力学学报, 2019, 51(1): 103-110 (Gao Tianda, Sun Jiao, Fan Ying, et al. PIV experimental investigation on the behavior of particles turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 103-110 (in Chinese)
    [25] Sato Y, Hishida K. Transport process of turbulence energy in particle-laden turbulent flow. International Journal of Heat & Fluid Flow, 1996, 17(3): 202-210
    [26] Shokri R, Ghaemi S, Nobes DS, et al. Investigation of particle-laden turbulent pipe flow at high-Reynolds-number using particle image/tracking velocimetry (PIV/PTV). International Journal of Multiphase Flow, 2017, 89: 136-149 doi: 10.1016/j.ijmultiphaseflow.2016.06.023
    [27] Jing L, Wang H, Liu Z, et al. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 2012, 53(5): 1385-1403 doi: 10.1007/s00348-012-1364-7
    [28] Li J, Liu ZH, Wang HF, et al. Turbulence modulations in the boundary layer of a horizontal particle-laden channel flow. Chinese Physics Letter, 2010, 27(6):129-132
    [29] Jiao S, Tianda G, Ying F, et al. The modulation of particles on coherent structure of turbulent boundary layer in dilute liquid-solid two-phase flow with PIV. Powder Technology, 2018, 344(2019): 883-896
    [30] Clauser FH. Turbulent boundary layers in adverse pressure gradients. Journal of Aeronautic Science, 1954, 21: 91-108 doi: 10.2514/8.2938
    [31] 连祺祥. 湍流边界层拟序结构的实验研究. 力学进展, 2006, 36(3): 373-388 (Lian Qixiang. Experimental study on quasi-ordered structures of turbulent boundary layer. Advances in Mechanics, 2006, 36(3): 373-388 (in Chinese)
    [32] 姜楠, 管新蕾, 于培宁. 雷诺应力各向异性涡黏模型的层析TRPIV测量. 力学学报, 2012, 44(2): 213-221 (Jiang Nan, Guan Xinlei, Yu Peining. Tomographic TRPIV measurement of Reynolds stress anisotropic vortex-viscous mode. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 213-221 (in Chinese)
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  93
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 录用日期:  2021-07-05
  • 网络出版日期:  2021-07-06
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回