EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于喷流拟序结构预测的SGS模型比较研究

刘琪麟 赖焕新

刘琪麟, 赖焕新. 基于喷流拟序结构预测的SGS模型比较研究. 力学学报, 2021, 53(7): 1842-1855 doi: 10.6052/0459-1879-21-145
引用本文: 刘琪麟, 赖焕新. 基于喷流拟序结构预测的SGS模型比较研究. 力学学报, 2021, 53(7): 1842-1855 doi: 10.6052/0459-1879-21-145
Liu Qilin, Lai Huanxin. Comparison of sub-grid-scale models based on prediction of coherent structures in plane turbulent jets. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1842-1855 doi: 10.6052/0459-1879-21-145
Citation: Liu Qilin, Lai Huanxin. Comparison of sub-grid-scale models based on prediction of coherent structures in plane turbulent jets. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1842-1855 doi: 10.6052/0459-1879-21-145

基于喷流拟序结构预测的SGS模型比较研究

doi: 10.6052/0459-1879-21-145
基金项目: 国家自然科学基金资助项目(51976061)
详细信息
    作者简介:

    赖焕新, 教授, 主要研究方向: 流体机械及气动声学. E-mail: hlai@ecust.edu.cn

  • 中图分类号: O354.1

COMPARISON OF SUB-GRID-SCALE MODELS BASED ON PREDICTION OF COHERENT STRUCTURES IN PLANE TURBULENT JETS

  • 摘要: 拟序结构是湍流机理研究的重要对象, 而亚网格尺度(sub-grid scale, SGS)模型的准确性是高精度大涡模拟的关键, 对正确预测湍流拟序结构有重要影响. 本文对马赫数0.9的可压缩喷流开展大涡模拟, 使用4阶空间截差和3阶时间截差的高精度有限差分算法, 亚网格尺度模型分别采用了Smagorinsky模型(Smagorinsky model, SM)、拟序结构动能模型(CKM)、选择多尺度模型(selective mixed-scale model, SMSM)、局部动态Smagorinsky模型(localized dynamic Smagorinsky model, LDSM)和拟序结构模型(coherent-structure Smagorinsky model, CSM)以及对平均耗散、瞬时涡结构、脉动速度POD主导模态的分析表明, $u'$的主导模态呈带状, 在下游分岔或破碎, 呈现出多尺度特征, $v'$的主导模态则呈流向排列的肋状, 矢量$\left( {u', v'} \right)$的模态在肋的两端呈环流模式, 表征流动卷吸, $w'$的主导模态呈流向排布的脊状, 表征流场受展向拉伸的模式. 脉动速度的POD模态对亚网格尺度耗散敏感, 其中CKM模型预测的峰值耗散区对应$u'$模态的低谷区, 因而预测的环流模式不明显; SM模型则未能预测出$w'$的脊状模态. SMSM, CSM和LDSM模型均较好地反映了湍流中涡结构的多尺度特性, 揭示了流动卷吸、脊状的展向拉伸等流动模式, 其中CSM模型的计算效率较高.

     

  • 图  1  计算域与网格(3个方向都每隔3条网格线画一条线)

    Figure  1.  Computional domain and the Grid(One in every three lines is shown in each direction)

    图  2  LDSM模型预测的脉动速度无量纲功率谱

    Figure  2.  Dimensionless power spectra of velocity signals predicted by the LDSM

    图  3  喷流剪切层的发展

    Figure  3.  Developments of the jet shear layer

    图  4  对比$\left\langle {{\varepsilon _{{\rm{sgs}}}}} \right\rangle $在中心平面(${\textit{z}} = 1.5$)上的分布

    Figure  4.  Comparisons of the distribution of $\left\langle {{\varepsilon _{{\rm{sgs}}}}} \right\rangle $ in the center plane of the jet (${\textit{z}} = 1.5$)

    图  5  对比$Q = 0.1$的等值面, 采用流向速度着色, 红色切片位置标记了文献[22]中DNS结果的势流核末端: x = 6.43

    Figure  5.  Comparisons of the iso-surface of $Q = 0.1$, colored by streamwize velocity. The red slice marks the end of the potential core x = 6.43 of the DNS results in Ref. [22]

    图  6  对比${\omega _z}$的等值面, 红色切片位置标记了文献[22]中DNS结果的势流核末端: x = 6.43

    Figure  6.  Comparisons of the iso-surface of ${\omega _z}$, the red slice marks the end of the potential core x = 6.43 of the DNS results in Ref. [22]

    图  7  $u'$模态的累计能量贡献率的收敛曲线

    Figure  7.  Convergency curves of the cumulative energy contribution for the modes of $u'$

    图  8  脉动速度分量的POD模态的能量贡献率

    Figure  8.  Energy contribution rate of POD modes for the fluctuate velocity components

    图  9  流向脉动速度$u'$的第一阶POD模态云图, 实、虚等值线分别表示$u' = + 0.003$$u' = - 0.003$

    Figure  9.  Contours of the first-order POD modes of $u'$, with solid contour lines for $u' = + 0.003$ and dashed contour lines for $u' = - 0.003$

    图  10  横向脉动速度v'的第一阶POD模态云图与面内矢量$\left( {u',v'} \right)$的第一阶POD模态矢量图(实、虚等值线分别表示 $v' = + 0.003$$v' = - 0.003$, 红圈标示逆时针环流、蓝圈标示顺时针环流)

    Figure  10.  Contours of the first-order POD modes of v' and the in plane vector $\left( {u',v'} \right)$ (Solid contour lines for $v' = + 0.003$ and dashed contour lines for $v' = - 0.003$. Red circle marks counterclockwise circular flow and blue circle indicates clockwise circular flow)

    图  11  展向脉动速度$w'$的第一阶POD模态云图 (续)

    Figure  11.  Contours of the first-order POD modes of $w'$, with solid contour lines for $w' = + 0.003$ and dashed contour lines for $w' = - 0.003$ (continued)

    11  展向脉动速度$w'$的第一阶POD模态云图

    11.  Contours of the first-order POD modes of $w'$, with solid contour lines for $w' = + 0.003$ and dashed contour lines for $w' = - 0.003$

    表  1  每时间步内每网格点所占用的CPU时间

    Table  1.   CPU time per grid point per time step

    SGS modelsLDSMSMSMCKMCSMSM
    CPU time/μs 1748 1371 1300 1065 1064
    下载: 导出CSV
  • [1] Fiedler HE. Coherent structures in turbulent flows. Progress in Aerospace Sciences, 1988, 25(3): 231-269 doi: 10.1016/0376-0421(88)90001-2
    [2] Everitt KW, Robins AG. The development and structure of turbulent plane jets. Journal of Fluid Mechanics, 1978, 88(3): 563-583 doi: 10.1017/S0022112078002281
    [3] Jeong J, Hussain F. On the identification of a vortex. Journal of Fluid Mechanics, 1995, 285: 69-94 doi: 10.1017/S0022112095000462
    [4] Meyer M , Hickel S , Adams NA. Assessment of Implicit Large-Eddy Simulation with a Conservative Immersed Interface Method for turbulent cylinder flow. International Journal of Heat & Fluid Flow, 2010, 31(3): 368-377
    [5] 陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型. 力学学报, 2020, 52(5): 1314-1322 (Chen Linfeng. A residual-based unresolved-scale finite element modelling for implict large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1314-1322 (in Chinese) doi: 10.6052/0459-1879-20-055
    [6] Sagaut P, Drikakis D. Large Eddy Simulation//Blockley R, Shyy W eds. Encyclopedia of Aerospace Engineering. John Wiley & Sons, Ltd., 2010: 1–8
    [7] Vreman AW. Direct and large-eddy simulation of the compressible turbulent mixing layer. [PhD Thesis]. Enschede: Universiteit Twente, 1995: 23-24
    [8] Pope SB. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 2004, 6(1): 35
    [9] Piomelli U, Liu J. Large-eddy simulation of rotating channel flows using a localized dynamic model. Physics of Fluids, 1995, 7(4): 839-848 doi: 10.1063/1.868607
    [10] Lenormand E, Sagaut P, Ta Phuoc L. Large eddy simulation of subsonic and supersonic channel flow at moderate reynolds number. International Journal for Numerical Methods in Fluids, 2000, 32(4): 369-406 doi: 10.1002/(SICI)1097-0363(20000229)32:4<369::AID-FLD943>3.0.CO;2-6
    [11] Mary I, Sagaut P. Large eddy simulation of flow around an airfoil near stall. AIAA Journal, 2002, 40(6): 1139-1145 doi: 10.2514/2.1763
    [12] Larchevêque L, Sagaut P, Mary I, et al. Large-eddy simulation of a compressible flow past a deep cavity. Physics of Fluids, 2003, 15(1): 193-210 doi: 10.1063/1.1522379
    [13] Kobayashi H. The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Physics of Fluids, 2005, 17(4): 45104 doi: 10.1063/1.1874212
    [14] Kobayashi H, Ham F, Wu X. Application of a local sgs model based on coherent structures to complex geometries. International Journal of Heat and Flow, 2008, 29(3): 640-653 doi: 10.1016/j.ijheatfluidflow.2008.02.008
    [15] Nogueira PAS, Cavalieri AVG, Jordan P, et al. Large-scale streaky structures in turbulent jets. Journal of Fluid Mechanics, 2019, 873(5): 211-237
    [16] Shinneeb AM, Balachandar R, Bugg JD. Analysis of coherent structures in the far-field region of an axisymmetric free jet identified using particle image velocimetry and proper orthogonal decomposition. Journal of Fluids Engineering, 2008, 130(1): 11202 doi: 10.1115/1.2813137
    [17] Saha P, Biswas G, Mandal AC, et al. Investigation of coherent structures in a turbulent channel with built-in longitudinal vortex generators. International Journal of Heat and Mass Transfer, 2017, 104: 178-198 doi: 10.1016/j.ijheatmasstransfer.2016.07.105
    [18] Lumley JL. Coherent Structures in Turbulence. Transition and Turbulence. Elsevier, 1981: 215-242
    [19] Higham JE, Brevis W, Keylock CJ. Implications of the selection of a particular modal decomposition technique for the analysis of shallow flows. Journal of Hydraulic Research, 2018, 56(6): 796-805 doi: 10.1080/00221686.2017.1419990
    [20] Taira K, Brunton SL, Dawson STM, et al. Modal analysis of fluid flows: an overview. AIAA Journal, 2017, 55(12): 4013-4041 doi: 10.2514/1.J056060
    [21] 刘琪麟, 赖焕新. 平行射流大涡模拟及SGS模型的比较. 工程热物理学报, 2018, 39(6): 1272-1278 (Liu Qilin, Lai Huanxin. Large eddy simulation of a plane jet and comparison of sgs models. Journal of Engineering Thermophysics, 2018, 39(6): 1272-1278 (in Chinese)
    [22] Hu Z, Morfey C, Sandham N. Large eddy simulation of plane jet sound radiation//9th AIAA/CEAS Aeroacoustics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003: 1-8
    [23] Schumann U. Direct and large eddy simulation of turbulence: Summary of the state-of-the-art//Lecture Series 1991-02: Introduction to Modeling Turbulence, Von Karman Institute, Brussels
    [24] Lenormand E, Sagaut P, Phuoc LT, et al. Subgrid-scale models for large-eddy simulations of compressible wall bounded flows. AIAA Journal, 2000, 38(8): 1340-1350 doi: 10.2514/2.1133
    [25] Celik IB, Cehreli ZN, Yavuz I. Index of resolution quality for large eddy simulations. Journal of Fluids Engineering, Transactions of the ASME, 2005, 127(5): 949-958 doi: 10.1115/1.1990201
    [26] 刘琪麟, 赖焕新. 平行喷流LES质量指标分析及三种SGS模型的初步评估// 第十届全国流体力学学术会议论文集. 杭州, 2018: 1-8

    (Liu Qilin, Lai Huanxin. Evaluation of grid resolution and comparison of three subgrid scale models for large eddy simulation of a plane jet// Proceedings of the Tenth National Conference on Hydrodynamics, Hangzhou, China, 2018: 1-8 (in Chinese))
    [27] Sandham ND, Morfey CL, Hu ZW. Nonlinear mechanisms of sound generation in a perturbed parallel jet flow. Journal of Fluid Mechanics, 2006, 565(1): 1-23
    [28] Tullio ND, Sandham ND. Direct numerical simulation of breakdown to turbulence in a mach 6 boundary layer over a porous surface. Physics of Fluids, 2010, 22(9): 94105 doi: 10.1063/1.3481147
    [29] Lai H, Luo KH. A three-dimensional hybrid les-acoustic analogy method for predicting open-cavity noise. Flow, Turbulence and Combustion, 2007, 79(1): 55-82 doi: 10.1007/s10494-006-9066-y
    [30] Carpenter MH, Nordstrm J, Gottlieb D. A stable and conservative interface treatment of arbitrary spatial accuracy. Journal of Computational Physics, 1999, 148(2): 341-365 doi: 10.1006/jcph.1998.6114
    [31] Sandham ND, Li Q, Yee HC. Entropy splitting for high-order numerical simulation of compressible turbulence. Journal of Computational Physics, 2002, 178(2): 307-322 doi: 10.1006/jcph.2002.7022
    [32] Thompson KW. Time-dependent boundary conditions for hyperbolic systems, II. Journal of Computational Physics, 1990, 89(2): 439-461 doi: 10.1016/0021-9991(90)90152-Q
    [33] Freund JB. Noise sources in a low-reynolds-number turbulent jet at Mach 0.9. Journal of Fluid Mechanics, 2001, 438: 277-305 doi: 10.1017/S0022112001004414
    [34] 何诚, 赖焕新. 伴流速度对平行喷口射流影响的数值研究. 航空动力学报, 2018, 33(8): 2006-2015 (He Cheng, Lai Huanxin. Numerical investigation of influence of co-flow velocity on plane jet. Journal of Aerospace Power, 2018, 33(8): 2006-2015 (in Chinese)
    [35] 王庆宇, 刘琪麟, 赖焕新. 高亚声速喷流近场的流−声关联. 航空动力学报, 2020, 35(12): 2532-2542 (Wang Qingyu, Liu Qilin, Lai Huanxin. Flow-acoustics correlations in near-fields of high subsonic jet. Journal of Aerospace Power, 2020, 35(12): 2532-2542 (in Chinese)
    [36] Liu Q, Dong YH, Lai H. Large eddy simulation of compressible parallel jet flow and comparison of four subgrid-scale models. Journal of Applied Fluid Mechanics, 2019, 12(5): 1599-1614 doi: 10.29252/jafm.12.05.29839
    [37] Bradbury LJS. The structure of a self-preserving turbulent plane jet. Journal of Fluid Mechanics, 1965, 23(1): 31-64 doi: 10.1017/S0022112065001222
    [38] Gutmark E, Wygnanski I. The planar turbulent jet. Journal of Fluid Mechanics, 1976, 73(3): 465-495 doi: 10.1017/S0022112076001468
    [39] Ramaprian BR, Chandrasekhara MS. Lda measurements in plane turbulent jets. Transactions of the ASME, 1985, 107: 264-271 doi: 10.1115/1.3247393
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  52
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 录用日期:  2021-05-21
  • 网络出版日期:  2021-05-25
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回