EXPERIMENTAL INVESTIGATION INTO THE CONTROL OF FLOW-INDUCED OSCILLATIONS OF UNDERWATER APERTURE-CAVITIES
-
摘要: 水中开孔腔流激振荡是水下航行器的一类突出噪声源. 为探究有效抑制水中开孔腔流激振荡的控制方法和作用特性, 首先以水下航行器的表面开孔结构为对象设计了开孔腔模型, 并提出一种基于来流边界层分流原理的流动控制装置——前缘分流体, 借助循环水洞装置对水中开孔腔的流激振荡特性及其控制进行了实验研究. 通过沿流向和展向安装于腔底的动态压力传感器测量腔内脉动压力, 分别从腔内脉动压力的频谱特性和空间分布特性两方面, 探讨了水中开孔腔在不同流速下的流激振荡特性和前缘分流体对水中开孔腔流激振荡的控制效果, 并对前缘分流体的主要作用机理进行了分析. 研究结果表明: 水中开孔腔流激振荡形式以剪切层自持振荡为主, 在流速较低时, 如2.4 m/s, 就会产生稳定的自持振荡, 且具有随流速升高而急剧增大的趋势; 前缘分流体对水中开孔腔绕流自持振荡具有良好的抑制效果, 且抑制效果随流速增加而显著提升, 对腔内脉动压力频谱峰值和总级的最大抑制量分别达到25.3 dB和15.6 dB; 此外, 前缘分流体对开孔腔流激振荡具有低频频移作用, 有益于避免发生流激空腔共振; 脉动压力空间分布特性表明, 前缘分流体对水中开孔腔流激振荡抑制机理主要在于破坏了腔内流场受到的周期调制作用.Abstract: Flow-induced oscillation (FIO) of underwater aperture-cavities is one of prominent noise sources of underwater vehicles. In order to explore the effective control method and suppression characteristics of FIO of underwater aperture-cavity, experiments of FIO characteristics and its control of underwater aperture-cavities were carried out in the circulating water tunnel. The experimental model of underwater aperture-cavity was designed based on the surface aperture structure of underwater vehicles, and the FIO control device, leading-edge flow splitter (LFS), was proposed based on the principle of incoming boundary layer diversion. The FIO characteristics of underwater aperture-cavities and the effects of LFS on FIO at different freestream velocities were discussed from the two aspects of the frequency spectrum characteristics and the spatial distribution characteristics of the intracavity pressure fluctuations, while the intracavity pressure fluctuations were measured by the streamwise and spanwise installed dynamic pressure transducers at the bottom of the cavity. The investigation results show that the form of FIO of underwater aperture-cavities is dominated by the self-sustained oscillation of the shear layer, which occurs at a relatively low freestream velocity, such as 2.4 m/s, and has an intensive reinforcement with the increase of the freestream velocity. It was proved that the LFS has a good suppression effect on the FIO of aperture-cavities in water, and the suppression effect is significantly enhanced with the increase of the freestream velocity. Specifically, the maximum suppression of the peak and total level of the intracavity pressure fluctuations spectrum reaches 25.3 dB and 15.6 dB, respectively. Besides, the LFS has a low frequency shift effect on the FIO of aperture-cavities, which is beneficial for avoiding the occurrence of flow-induced cavity resonance. Finally, the spatial distribution characteristics of pressure fluctuations indicate that the suppression mechanism of the FIO of underwater aperture cavities by the LFS mainly lies in destroying the periodic modulation effect of the intracavity flow field.
-
Key words:
- aperture-cavity /
- flow-induced oscillation /
- flow control /
- cavity flow /
- underwater noise
-
图 10 不同流速下开孔腔绕流自持振荡频率分布(
${f_{1{\rm{st}}}}$ 和${f_{{\rm{2nd}}}}$ 分别为基准开孔腔一阶和二阶自持振荡频率,${f_{{\rm{control}}}}$ 为控制开孔腔自持振荡频率)Figure 10. Frequencies of self-sustained oscillation of aperture-cavity flow versus freestream velocity (
${f_{1{\rm{st}}}}$ &${f_{{\rm{2nd}}}}$ are the frequencies of first and second self-sustained oscillation of baseline case, respectively;${f_{{\rm{control}}}}$ is the frequency of self-sustained oscillation of controlled case)表 1 腔底传感器安装位置
Table 1. Location of the floor mounted transducers
Tags P1 P2 P3 P4 P5 P6 x/L −2.28 −1.52 −0.76 0 0.76 1.52 y/W 0 0 0 0 0 0 Tags P7 P8 P9 P10 P11 x/L 2.28 0 0 0 0 y/W 0 −0.43 −0.21 0.21 0.43 表 2 自持振荡一阶模态频率实验值和预测值对比
Table 2. Comparison of 1st mode frequency of self-sustained oscillation between experimental values and predicted values
${U_\infty }$/(m·s−1) ${f_{1,\exp }}$/Hz ${f_{1,{\rm{pre}}}}$(Eq. (12))
/Hz${f_{1,{\rm{pre}}}}$(Eq. (13))
/HzError/% Eq. (12) Eq. (13) 2.0 19.5 18.3 21.3 −6 9.1 2.4 24 22.0 25.5 −8.3 6.4 2.8 28.5 25.7 29.8 −10 4.5 3.2 32.5 29.3 34. −9.8 4.7 3.6 36 33 38.3 −8.4 6.3 4.0 39 36.6 42.5 −6 9.1 4.4 41 40.3 46.8 −1.1 14.1 表 3 自持振荡二阶模态频率实验值和预测值对比
Table 3. Comparison of 2nd mode frequency of self-sustained oscillation between experimental values and predicted values
${U_\infty }$/(m·s−1) ${f_{2,\exp }}$/Hz ${f_{2,{\rm{pre}}}}$(Eq. (12))
/Hz${f_{2,{\rm{pre}}}}$(Eq. (13))
/HzError/% Eq. (12) Eq. (13) 3.2 61 65.7 69.1 7.8 13.2 3.6 67.5 74 77.7 9.6 15.1 4.0 75.5 82.2 86.3 8.8 14.3 4.4 82 90.4 95 10.2 15.8 表 4 从互相关分析估算的自持振荡主导模态频率
Table 4. Dominant mode frequencies of self-sustained oscillations estimated from cross-correlation analysis
${U_\infty }$/(m·s−-1) Time lag/ms Estimated ${f_{{\rm{dom}}}}$
/Hz${f_{{\rm{dom}}}}$ obtained
from PSD/Hz3.2 32.87 30.42 32.5 3.6 29.4474 33.97 36 4.0 13.1274 76.18 75.5 4.4 12.1774 82.11 82 -
[1] Bacci D, Saddington A, Bray D. Identification of the formation of resonant tones in compressible cavity flows. Aerospace Science and Technology, 2018, 77: 320-331 doi: 10.1016/j.ast.2018.03.013 [2] 梁勇, 陈迎春, 赵鲲等. 锯齿单元对起落架/舱体耦合噪声抑制实验研究. 航空学报, 2019, 40: 22932 (Liang Yong, Chen Yingchun, Zhao Kun, et al. Experiment investigation on control of the coupling noise from aircraft landing gear/bay using saw- tooth spoiler. Acta Aeronautica et Astronautica Sinica, 2019, 40: 22932 (in Chinese) [3] 谷正气, 王宁, 汪怡平等. 基于空腔流动特性的汽车侧窗风振噪声控制方法研究. 振动工程学报, 2014, 27(3): 409-415 (Gu Zhengqi, Wang Ning, Wang Yiping, et al. Control of wind buffeting noise inside-window of automobiles based on cavity flow characteristics. Journal of Vibration Engineering, 2014, 27(3): 409-415 (in Chinese) [4] Burroughs CB, Stinebring DR. Cavity flow tones in water. Journal of Acoustical Society of America, 1994, 95(3): 1256-1263 doi: 10.1121/1.408568 [5] Blake WK. Mechanics of Flow-induced Sound and Vibration. London: Academic Press, 1986: 130-218 [6] Zhang Y, Sun Y, Arora N, et al. Suppression of cavity oscillations via three-dimensional steady blowing. AIAA Journal, 2019, 57(1): 90-105 doi: 10.2514/1.J057012 [7] Zhang MM, Cheng L, Zhou Y. Asynchronous control of vortex-induced acoustic cavity resonance using imbedded piezo-electric actuators. The Journal of the Acoustical Society of America, 2009, 126(1): 36-45 doi: 10.1121/1.3143784 [8] Yokoyama H, Tanimoto I, Iida A. Experimental tests and aeroacoustic simulations of the control of cavity tone by plasma actuators. Applied Sciences, 2017, 7: 790 doi: 10.3390/app7080790 [9] 杨党国, 吴继飞, 罗新福. 零质量射流对开式空腔气动噪声抑制效果分析. 航空学报, 2011, 32(6): 1007-1015 (Yang Dangguo, Wu Jifei, Luo Xinfu. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1007-1015 (in Chinese) [10] Knotts BD, Selamet A. Suppression of flow-acoustic coupling in sidebranch ducts by interface modification. Journal of Sound and Vibration, 2003, 265(5): 1025-1045 doi: 10.1016/S0022-460X(02)01254-3 [11] Saddington AJ, Thangamani V, Knowles K. Comparison of passive flow control methods for a cavity in transonic flow. Journal of Aircraft, 2016, 53(5): 1439-1447 doi: 10.2514/1.C033365 [12] 吴继飞, 徐来武, 范召林等. 开式空腔气动声学特性及其流动控制方法. 航空学报, 2015, 36(7): 2155-2165 (Wu Jifei, Xu laiwu, Fan Zhaolin, et al. Aeroacoustic characteristics and flow control method of open cavity flow. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2155-2165 (in Chinese) [13] Wang Y, Li S, Yang X. Numerical investigation of the passive control of cavity flow oscillations by a dimpled non-smooth surface. Applied Acoustics, 2016, 111: 16-24 doi: 10.1016/j.apacoust.2016.04.005 [14] Mcgrath S, Shaw L. Active control of shallow cavity acoustic resonance. AIAA Journal, 1996, 96-1949 [15] Martinez MA, Di Cicca GM, Iovieno M, et al. Control of cavity flow oscillations by high frequency forcing. Journal of Fluids Engineering, Transactions of the ASME, 2012, 134(5): 1-11 [16] Arunajatesan S, Sinha N. Modeling approach for reducing Helmholtz resonance in submarine structures//Collection of Technical Papers, 11th AIAA/CEAS Aeroacoustics Conference, Monterey, California, 2005: 760-771 [17] 刘璐璐, 吕世金, 刘进. 流激孔腔噪声特征及控制方法研究. 船舶力学, 2017, 21(4): 493-502 (Liu Lulu, Lü Shijin, Liu Jin. Characteristics and control of cavity noise induced by flow excitation. Journal of Ship Mechanics, 2017, 21(4): 493-502 (in Chinese) doi: 10.3969/j.issn.1007-7294.2017.04.014 [18] 张永昌. 格栅-空腔绕流流场自激振荡研究及其在高速列车中的应用. [博士论文]. 北京. 北京交通大学, 2017Zhang Yongchang. Study on self-excited oscillations in grille-cavity flow and its applications in high-speed trains. [PhD Thesis]. Beijing: Beijing Jiaotong University, 2017 (in Chinese) [19] 邓玉清, 张楠. 基于大涡模拟的抑制孔腔涡旋流动与脉动压力的流动控制方法研究. 船舶力学, 2019, 23(1): 29-42 (Deng Yuqing, Zhang Nan. Research on the flow control method to suppress cavity vortical flow and pressure fluctuations by large eddy simulation. Journal of Ship Mechanics, 2019, 23(1): 29-42 (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.01.004 [20] 张翰钦, 周刘彬, 雷成友等. 一种水下开孔流激噪声充液式主动控制装置. [中国专利]. 201921138722.8, 2020-9-8Zhang Hanqin, Zhou Liubin, Lei Chengyou, et al. A liquid filled active control device for underwater flow induced noise. [Chinese Patent]. 201921138722.8, 2020-9-8 (in Chinese) [21] 汪利, 李红钢, 华如南 等. 用于抑制水下空腔流激振荡线谱噪声的装置. [中国专利]. 201620678659.7, 2017-2-1Wang Li, Li Honggang, Hua Runan, et al. A device for suppressing the noise of underwater cavity flow excitation line spectrum. [Chinese Patent]. 201620678659.7, 2017-2-1 (in Chinese) [22] 章文文, 徐荣武. 前缘扰流体对水中流激空腔振荡影响的数值研究. 振动与冲击, 2021, 40(24): 13-22 (Zhang Wenwen, Xu Rongwu. Numerical investigation on the influence of leading-edge spoilers on underwater flow-induced cavity oscillations. Journal of Vibration and Shock, 2021, 40(24): 13-22 (in Chinese) [23] 温爱萍. 紊流噪声. 无锡: 中国舰船研究设计中心, 2012Wen Ai-ping. Noise of Turbulence Flow. Wuxi: Chinese Ship Research and Design Center, 2012 (in Chinese) [24] Welch P. The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 70-73 doi: 10.1109/TAU.1967.1161901 [25] Roshko A. Some measurements of flow in a rectangular cutout. NACA, Technical Note 3488, 1955 [26] Gloerfelt X. Cavity Noise. Paris: Von Kármán Institute Lecture Series, 2009: 9-27 [27] Rossiter JE. Wind Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds. London: Ministry of Aviation, R. & M. 1964: 3438 [28] Oshkaia P, Rockwell D, Pollack M. Shallow cavity flow tones: transformation from large- to small-scale modes. Journal of Sound and Vibration, 2005, 280: 777-813 doi: 10.1016/j.jsv.2003.12.054 [29] Basley J, Pastur LR, Lusseyran F, et al. Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV. Experiments in Fluids, 2011, 50(4): 905-918 doi: 10.1007/s00348-010-0942-9 [30] Tuerke F, Sciamarella D, Pastur LR, et al. Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves. Physical Review E, 2015, 91(1): 1-10 [31] Tuerke F, Pastur L, Fraigeay Y, et al. Nonlinear dynamics and hydrodynamic feedback in two-dimensional double cavity flow. Journal of Fluid Mechanics, 2017, 813: 1-22 doi: 10.1017/jfm.2016.771 [32] Yang Y, Rockwell D, Lai-Fook CK, et al. Generation of tones due to flow past a deep cavity: Effect of streamwise length. Journal of Fluids and Structures, 2009, 25(2): 364-388 doi: 10.1016/j.jfluidstructs.2008.05.003 [33] Bennett GJ, Stephens DB, Rodriguez VF. Resonant mode characterization of a cylindrical Helmholtz cavity excited by a shear layer. The Journal of the Acoustical Society of America, 2017, 141(1): 7-18 doi: 10.1121/1.4973212 [34] Rockwell D, Naudascher E. Review—Self-sustained oscillations of flow past cavities. Journal of Fluids Engineering, 1978, 100: 152-165 doi: 10.1115/1.3448624 [35] 周城光, 刘碧龙, 李晓东等. 腔壁弹性对充水亥姆霍兹共振器声学特性的影响: 圆柱形腔等效集中参数模型. 声学学报, 2007, 32(5): 426-434 (Zhou Chengguang, Liu Bilong, Li Xiaodong, et al. Effect of elastic cavity wall on acoustic characteristics of a water-filled Helmholtz resonator: equivalent lumped parameter model for cylindrical cavity. Acta Acustica, 2007, 32(5): 426-434 (in Chinese) doi: 10.3321/j.issn:0371-0025.2007.05.006 [36] 高岩, 沈琪, 俞孟萨. 弹性腔流激耦合共振及声辐射机理研究. 船舶力学, 2016, 20(8): 103-1044 (Gao Yan, Shen Qi, Yu Mengsa. A mechanism study on coupling resonance and acoustic radiation of elastic cavity induced by flow. Journal of Ship Mechanics, 2016, 20(8): 103-1044 (in Chinese) [37] 朱幼君. 管道空腔流声耦合振荡及压电振子流动控制技术的研究. [博士论文]. 上海: 上海交通大学, 2010Zhu Youjun. Research on the duct cavity resonance and oscillation suppression with piezoelectric cantilever vibrator. [PhD Thesis]. Shanghai: Shanghai Jiaotong University, 2010 (in Chinese) [38] 张翰钦, 孙国仓, 郑国垠等. 水下开孔结构流激振荡频率特性分析. 浙江大学学报(工学版), 2017, 51(2): 350-357 (Zhang Hanqing, Sun Guocang, Zhang Guoyin, et al. Analysis of frequency characteristic of underwater flow-induced cavity oscillation. Journal of Zhejiang University (Engineering Science) , 2017, 51(2): 350-357 (in Chinese) doi: 10.3785/j.issn.1008973X.2017.02.017 [39] Tuerke F, Lusseyran F, Sciamarella D, et al. Nonlinear delayed feedback model for incompressible open cavity flow. Physical Review Fluids, 2020, 5(2): 24401 doi: 10.1103/PhysRevFluids.5.024401 [40] 梁勇, 陈迎春, 赵鲲等. 低速开式空腔自激反馈流场结构与流致噪声的风洞试验研究. 声学学报, 2020, 45(6): 859-868 (Liang Yong, Chen Yingchun, Zhao Kun, et al. Wind tunnel experimental study of self-oscillation feedback flow field structure and flow induced aeroacoustic for open cavity at low speed. Acta Acustica, 2020, 45(6): 859-868 (in Chinese) [41] Marsden O, Bailly C, Bogey, et al. Investigation of flow features and acoustic radiation of a round cavity. Journal of Sound and Vibration, 2012, 331(15): 3521-3543 doi: 10.1016/j.jsv.2012.03.017 [42] Zhang K, Naguib AM. Effect of finite cavity width on flow oscillation in a low-Mach-number cavity flow. Experiments in Fluids, 2011, 51(5): 1209-1229 doi: 10.1007/s00348-011-1142-y [43] Ukeiley LS, Ponton MK, Seiner JM, et al. Suppression of pressure loads in cavity flows. AIAA Journal, 2004, 42(1): 70-79 doi: 10.2514/1.9032 -