EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含天然气水合物土微观力学特性研究进展

赵亚鹏 刘乐乐 孔亮 刘昌岭 吴能友

赵亚鹏, 刘乐乐, 孔亮, 刘昌岭, 吴能友. 含天然气水合物土微观力学特性研究进展. 力学学报, 2021, 53(8): 2119-2140 doi: 10.6052/0459-1879-21-138
引用本文: 赵亚鹏, 刘乐乐, 孔亮, 刘昌岭, 吴能友. 含天然气水合物土微观力学特性研究进展. 力学学报, 2021, 53(8): 2119-2140 doi: 10.6052/0459-1879-21-138
Zhao Yapeng, Liu Lele, Kong Liang, Liu Changling, Wu Nengyou. Advances in micromechanical properties of hydrate-bearing soils. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2119-2140 doi: 10.6052/0459-1879-21-138
Citation: Zhao Yapeng, Liu Lele, Kong Liang, Liu Changling, Wu Nengyou. Advances in micromechanical properties of hydrate-bearing soils. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2119-2140 doi: 10.6052/0459-1879-21-138

含天然气水合物土微观力学特性研究进展

doi: 10.6052/0459-1879-21-138
基金项目: 国家自然科学基金(42076217, 51778311)和国家重点研发计划(2018YFE0126400)资助项目
详细信息
    作者简介:

    刘乐乐, 副研究员, 主要研究方向: 海洋工程地质学与能源岩土工程. E-mail: lele.liu@qnlm.ac

    孔亮, 教授, 主要研究方向: 岩土本构模型与海洋岩土工程. E-mail: kongliang@qtech.edu.cn

  • 中图分类号: TE311

ADVANCES IN MICROMECHANICAL PROPERTIES OF HYDRATE-BEARING SOILS

  • 摘要: 天然气水合物作为一种资源储量大、分布范围广、能量密度高的清洁能源, 受到了国内外的广泛关注, 竞相研究安全高效、持续可控的开采方法. 充分掌握含天然气水合物土的力学特性并厘清其在开采过程中的动态演化规律, 是实现天然气水合物资源产业化开发的重要前提. 含天然气水合物土的力学响应行为本质上是其内部结构演化的宏观反映, 相关的微观力学特性研究对于深化含天然气水合物土力学特性认识具有重要的意义. 本文从天然气水合物晶体、天然气水合物与土颗粒界面、含天然气水合物土3个尺度对含天然气水合物土微观力学特性的研究现状进行了总结, 系统归纳了天然气水合物的晶体结构类型及天然气水合物的孔隙微观赋存模式; 重点介绍了计算机断层扫描、扫描电子显微镜、X射线衍射及原子力显微镜等微观测试技术原理与特点; 简述了与计算机断层扫描联用的三轴剪切实验、颗粒流程序模拟及分子动力学模拟在天然气水合物微观力学特性研究方面的最新进展; 综合现有研究结果对含天然气水合物土内颗粒界面剪切机理及微观力学理论模型进行了概述分析; 最后探讨了含天然气水合物土微观力学研究目前仍存在的不足与挑战, 并给出了针对性的建议以期促进含天然气水合物土的力学特性研究发展.

     

  • 图  1  非接触应力施加步骤[43]

    Figure  1.  Principal application steps of contactless stress[43]

    图  2  液桥力示意图及AFM实验液桥模型[46- 47]

    Figure  2.  Schematic of liquid bridge force and the model of liquid bridge for AFM experiment[46-47]

    图  3  甲烷水合物分子结构[59]

    Figure  3.  Molecular structure of methane hydrate[59]

    图  4  粗粒土中水合物赋存模式[67]

    Figure  4.  Idealized gas hydrate morphologies in coarse-grained soils[67]

    图  5  含水合物细粒土实物岩心[77]

    Figure  5.  Hydrate-bearing fine-grained soils in nature[77]

    图  6  水合物与土颗粒微观胶结接触模型概念图(改自文献[101])

    Figure  6.  Concept models of cementing and touching between gas hydrate and soil particles (modified from Ref. [101])

    图  7  颗粒尺度下含水合物土剪切机理[105]

    Figure  7.  Particle-scale shearing mechanism of hydrate-bearing soils[105]

    图  8  含水合物土拉伸及剪切破坏机制(改自文献[109])

    Figure  8.  Failure modes of tension and shearing in hydrate-bearing soils (modified from Ref. [109])

    图  9  含水合物土剪切过程中截面CT图像[85]

    Figure  9.  CT images of hydrate-bearing soils during shearing[85]

    图  10  不同抗滚动系数下含水合物土内力链分布[93]

    Figure  10.  Force chain distribution in hydrate-bearing soils under different rolling resistance coefficients[93]

    图  11  含水合物土的多剪切模型概念框架[132]

    Figure  11.  Illustration of conceptual framework for multishear model of hydrate-bearing soils[132]

    图  12  AFM结构示意图[167]

    Figure  12.  Schematic diagram of AFM[167]

    图  13  水合物AFM结构示意图[46]

    Figure  13.  Schematic diagram of hydrate AFM[46]

    图  14  含水合物土的微机械测力装置原理图[44]

    Figure  14.  Schematic diagram of devices to measure force in hydrate-bearing soils[44]

    表  1  不同类型天然气水合物晶体结构对比[36, 38]

    Table  1.   Comparison of different structures in natural gas hydrate crystals[36, 38]

    ParameterssIsIIsH
    small(X) big(Y) small(X) big(Y) small(X) medium(Y) big(Z)
    structure (crystal cavity) 512 51262 512 51264 512 435663 51268
    number 2 6 16 8 3 2 1
    molecular formula 2X·6Y·46H2O 16X·8Y·136H2O 3X·2Y·1Z·34H2O
    hydration number 5.75 5.67 5.67
    average radius /nm 0.391 0.433 0.391 0.473 0.391 0.406 0.571
    molecular size to hold /nm < 0.52 0.52 ~ 0.69 0.75 ~ 0.90
    crystal structure cube diamond hexahedron
    下载: 导出CSV

    表  2  近期水合物晶体MD模拟研究汇总

    Table  2.   Summary of recent MD research on hydrate crystals

    YearFocusRemarkRef.
    2015 Mechanical instability of monocrystalline and polycrystalline methane hydrates. The monocrystalline hydrate is brittle failure, while the polycrystalline is ductile.
    The mechanical stability of polycrystalline methane hydrate is closely related to the particle size and morphology.
    [60]
    2017 Thermodynamic properties of propane or tetrahydrofuran mixed with carbon dioxide or methane in Structure-II clathrate hydrates. The lattice parameter at a constant pressure or a constant temperature varies as a function of the guest type and guest coupling interaction.
    The thermodynamic properties of hydrates largely depend on the enclathrated compounds.
    [66]
    2018 Mechanical properties of methane hydrate: Intrinsic differences from ice. The crystal direction has little effect on the tensile response.
    Both types of crystals show brittle fracture behavior, but the specific failure forms are different.
    [57]
    2018 Role of guest molecules on the mechanical properties of clathrate hydrates. Tensile strength and Young’s modulus of CHs depend not only on the size and shape of guest molecules but also on their polarity.
    Strain-induced variation in structural characteristics of H-bonds pronouncedly depends on their locations and orientations.
    [56]
    2018 Guest-host interactions in mixed CH4–CO2 hydrates. Thermodynamic interaction energies, broken down between guest species and cage type, CO2 has a much stronger interaction with the hydrate framework than CH4 and that CO2 prefers the large cage while CH4 is energetically preferential to the small cage. [58]
    2019 The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs. During hydrate dissociation, the undecomposed hydrate core shrank in a stepwise manner with a curved dissociation front.
    The nanobubbles formed on the silica surfaces are not stable but also merge during the simulation process.
    [64]
    2020 Mechanical response of nanocrystalline ice-contained methane hydrates. There is a crossover in the tensile strength and average compressive flow stress due to the presence of ice.
    Reveals the dissociation and reformation of various water cages due to mechanical deformation.
    [59]
    2020 The dynamic process of N2–CO2 replacement for natural gas hydrate. The molecular dynamics method was used to systematically study the structural evolution, molecular number distribution, radial distribution function, hydrate free energy and diffusion process of the system. [61]
    下载: 导出CSV

    表  3  近期含水合物土CT联用三轴剪切实验汇总

    Table  3.   Summary of current triaxial shearing tests combined with CT conducted on hydrate-bearing soils

    YearFocusRemarkRef.
    2013 Development of innovative triaxial testing system.
    Capture the motion and local deformation of a specimen.
    Experimental system is stable and reliable.
    Toyoura sand indicate a barrel-type deformation which is the first visual observation under high confining and pore water pressure.
    [80]
    2015 Mechanical behavior of hydrate-bearing pressure-core sediments visualized under triaxial compression. Sediments containing natural gas hydrate exhibit brittle failure and hydrate-free sediments is ductile failure.
    With the increase of hydrate saturation, the local stiffness tends to increase.
    [79]
    2016 Large strain behavior of hydrate-bearing sediments with different saturations. With the increase of saturation, the peak strength increases and presents a brittle failure mode.
    The shear band thickness decreased with increasing hydrate saturation.
    [81]
    2019 Development of low temperature and high pressure triaxial apparatus based on X-ray. System capabilities are demonstrated using the in-situ formation of hydrate within a glass bead sample.
    Hydrate occurrence under triaxial stress and the evolution of local deformation along with strain are study by CD triaxial test.
    [83]
    2019 Development of testing assembly that
    combines pore-scale visualization and
    triaxial test capability of methane
    hydrate-bearing sediments.
    The equipment will improve the understanding of geomechanical behavior of these hydrate-bearing sediments under stress and its dependency on hydrate saturation, hydrate pore habits, and distribution patterns. [84]
    2020 Microstructure evolution of hydrate-bearing sands during thermal dissociation and ensued impacts on the mechanical and seepage characteristics. Hydrate covering the sand particle surface dissociates first and then at the menisci between sand particles.
    Hydrate dissociation could cause fabric changes in hydrate-bearing sands, resulting in a more isotropic orientation distribution of sand particles.
    [82]
    2020 Pore-scale investigation of methane hydrate-bearing sediments under triaxial condition. Hydrate enables the sand skeleton to bear additional loads, the potential of sand crushing upon hydrate dissociation also increases.
    Strength of hydrate-bearing sediments decreases as pressure-temperature condition approaches hydrate phase boundary.
    Hydrate-bearing sediments creep and heal with time.
    [78]
    2020 Microscopic analysis of hydrate failure in CD triaxial test. In the linearity region, the hydrate-cemented clusters moved as a whole while small hydrate particles would aggregate to the periphery of the clusters.
    Localized deformation occurred perfectly exhibit an antisymmetric bifurcation pattern.
    [85]
    下载: 导出CSV

    表  4  含水合物土微观本构模型分类及特点

    Table  4.   Classification and characteristics of microscopic constitutive models of hydrate-bearing soils

    ClassificationYearModeling basicCharacteristicApplicabilityRef.
    elastic-plastic models 2016 Critical state constitutive model. A simple bonding and debonding law issued to describe the evolution of the hydrate-induced bonding. The model can capture the stress–strain and volume change behaviors of hydrate-bearing soils (HBS) with the range of saturations, confining pressures and densities. [128]
    2017 MCC model and the concept of the effective degree of saturation. Nonassociative flow rule. The model can capture the enhancements of stiffness, strength and dilatancy, and the hydrate occurrence habits. [126]
    2017 The hiss critical-state framework, subloading concepts and hydrate enhancement factors. Bonding and damage effects are considered. The model can well describe the improvement of strength and stiffness, and dilatancy characteristics. [129]
    2020 CSUH model and the filling and bonding effects of hydrates. A compressive hardening parameter and a bonding parameter are put forward. The model can describe the strength, stiffness, shear dilation and strain-softening of HBS. [130]
    statistical damage models 2012 Mesomechanics mechanism perspective of composite material
    and principles of damage mechanics.
    The whole process of the stress-strain curve can be obtained only by obtaining the peak stress and strain values. The model can well reflect the change process of stress-strain curve of gas hydrate bearing sediments. [135]
    2019 The theory of micromechanics mixing rate of composite and the
    rock pore damage theory.
    Weibull statistical distribution and the Drucker-Prager criterion are used to describe micro elements. The model can well simulate the whole process of hydrate sediment deformation under different confining pressures. [137]
    2019 The continuous damage theory and the Weibull distribution of three parameters. The influence of damage threshold and residual strength are considered. The model can reflect the multi-field (thermo-hydro-mechanical-chemical) coupling characteristics of hydrate. [139]
    other models 2017 The concept of partition stress and inelastic mechanisms. Hydrate and soil skeleton adopt different mechanical models respectively. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. [131]
    2020 Bounding surface model and
    the slip theory of plasticity.
    A micro stress–strain relationship and a micro stress–dilatancy relationship are established. The model comprehensively describes the consolidation, hardening, softening, dilatation, collapse, and non-coaxial characteristics of hydrate. [132]
    下载: 导出CSV
  • [1] Englezos P. Clathrate hydrates. Industrial & Engineering Chemistry Research, 1993, 32: 1251-1274
    [2] Boswell R, Collett TS. Current perspectives on gas hydrate resources. Energy & Environmental Science, 2011, 4(4): 1206-1215
    [3] Thakur NK. Gas hydrates as alternative energy resource-seismic methods. Current Science, 2010, 99(2): 181-189
    [4] Collett T, Bahk JJ, Baker R, et al. Methane hydrates in nature-current knowledge and challenges. Journal of Chemical & Engineering Data, 2015, 60: 319-329
    [5] Makogon YF, Holditch SA, Makogon TY. Russian field illustrates gas-hydrate production. Oil and Gas Journal, 2005, 103(5): 43-47
    [6] Chand S, Minshull TA. The effect of hydrate content on seismic attenuation: A case study for Mallik 2L-38 well data, Mackenzie delta, Canada. Geophysical Research Letters, 2004, 31(14): L14609 doi: 10.1029/2004GL020292
    [7] Boswell R, Collett TS, Frye M, et al. Subsurface gas hydrates in the northern Gulf of Mexico. Marine and Petroleum Geology, 2012, 34(1): 4-30 doi: 10.1016/j.marpetgeo.2011.10.003
    [8] Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough//2014 Offshore Technology Conference, Houston, Texas, USA, 2014-05-05—08
    [9] 中华人民共和国自然资源部. 中国矿产资源报告. 北京: 地质出版社, 2018

    (Ministry of Natural Resources of The People’s Republic of China. China Mineral Resources Report. Beijing: Geological Publishing House, 2018 (in Chinese))
    [10] Li J, Ye J, Qin X, et al. The first offshore natural gas hydrate production test in South China Sea. China Geology, 2018, 1(1): 5-16 doi: 10.31035/cg2018003
    [11] 叶建良, 秦绪文, 谢文卫等. 中国南海天然气水合物第二次试采主要进展. 中国地质, 2020, 47(3): 557-568 (Ye Jianling, Qin Xuwen, Xie Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea. China Geology, 2020, 47(3): 557-568 (in Chinese)
    [12] 蔡建超, 夏宇轩, 徐赛等. 含水合物沉积物多相渗流特性研究进展. 力学学报, 2020, 52(1): 208-223 (Cai Jianchao, Xia Yuxuan, Xu Sai, et al. Advances in multiphase seepage characteristics of natural gas hydrate sediments. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223 (in Chinese)
    [13] Moridis GJ, Kowalsky MB, Pruess K. Depressurization-induced gas production from class-1 hydrate deposits. Society of Petroleum Engineers Reservoir Evaluation Andengineering, 2007, 10(5): 458-481
    [14] Wang Y, Li XS, Li G, et al. Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method. Fuel, 2014, 117: 688-696 doi: 10.1016/j.fuel.2013.09.088
    [15] 张旭辉, 鲁晓兵, 李鹏. 天然气水合物开采方法的研究综述. 中国科学: 物理学 力学 天文学, 2019, 49(3): 38-59 (Zhang Xuhui, Lu Xiaobing, Li Peng. A comprehensive review in natural gas hydrate recovery methods. Scientia Sinica:Physica,Mechanica &Astronomica, 2019, 49(3): 38-59 (in Chinese)
    [16] 吴德娟, 胡玉峰, 杨继涛. 天然气水合物新型抑制剂的研究进展. 天然气工业, 2000, 20(6): 95-98 (Wu Dejuan, Hu Yufeng, Yang Jitao. Progress in study of new inhibitor for natural gas hydrate. Natural Gas Industry, 2000, 20(6): 95-98 (in Chinese) doi: 10.3321/j.issn:1000-0976.2000.06.027
    [17] Collett TS. Results at Mallik highlight progress in gas hydrate energy resource research and development. Petrophysics, 2005, 46(3): 237-243
    [18] Tupsakhare SS, Kattekola S, Castaldi MJ. An application of the results from the large-scale thermal stimulation method of methane hydrate dissociation to the field tests. Industrial & Engineering Chemistry Research, 2017, 56(15): 4588-4599
    [19] Li Y, Liu L, Jin Y, et al. Characterization and development of marine natural gas hydrate reservoirs in clayey-silt sediments: A review and discussion. Advances in Geo-Energy Research, 2021, 5(1): 75-86 doi: 10.46690/ager.2021.01.08
    [20] Sultan N, Cochonat P, Foucher JP, et al. Effect of gas hydrates melting on seafloor slope instability. Marine Geology, 2004, 213(1): 379-401
    [21] Liu L, Lu X, Zhang X, et al. Numerical simulations for analyzing deformation characteristics of hydrate-bearing sediments during depressurization. Advances in Geo-Energy Research, 2017, 1(3): 135-147 doi: 10.26804/ager.2017.03.01
    [22] Li Z, Han J. Environmental safety and low velocity of the development of submarine natural gas hydrate with examples of test production in South China Sea. Environmental Science and Pollution Research, 2021, 28(5): 6259-6265 doi: 10.1007/s11356-020-12159-z
    [23] Rutqvist J, Moridis GJ, Grover T, et al. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. Journal of Petroleum Science and Engineering, 2009, 67(1-2): 1-12 doi: 10.1016/j.petrol.2009.02.013
    [24] 鲁晓兵, 张旭辉, 王淑云. 天然气水合物开采相关的安全性研究进展. 中国科学: 物理学 力学 天文学, 2019, 49(3): 7-37 (Lu Xiaobing, Zhang Xuhui, Wang Shuyun. Advances on the safety related with natural gas hydrate exploitation. Scientia Sinica:Physica,Mechanica &Astronomica, 2019, 49(3): 7-37 (in Chinese)
    [25] 董林, 廖华林, 李彦龙等. 天然气水合物沉积物力学性质测试与评价. 海洋地质前沿, 2020, 36(9): 34-43 (Dong Lin, Liao Hualin, Li Yanlong, et al. Measurement and assessment of mechanical properties of hydrate-bearing sediments. Marine Geology Frontiers, 2020, 36(9): 34-43 (in Chinese)
    [26] Hyodo M, Wu Y, Nakashima K, et al. Influence of fines content on the mechanical behavior of methane hydrate-bearing sedi-ments. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 7511-7524 doi: 10.1002/2017JB014154
    [27] Jin Y, Li S, Yang D. Experimental and theoretical quantification of the relationship between electrical resistivity and hydrate saturation in porous media. Fuel, 2020, 269: 117378 doi: 10.1016/j.fuel.2020.117378
    [28] Kumari A, Khan SH, Majumder CB, et al. Physio-chemical and mineralogical analysis of gas hydrate bearing sediments of Andaman Basin. Marine Geophysical Research, 2021, 42: 2 doi: 10.1007/s11001-020-09423-9
    [29] Sahoo SK, North LJ, Marin-Moreno H, et al. Laboratory observations of frequency-dependent ultrasonic P-wave velocity and attenuation during methane hydrate formation in Berea sandstone. Geophysical Journal International, 2019, 219(1): 712-723
    [30] Sun X, Wang L, Luo H, et al. Numerical modeling for the mechanical behavior of marine gas hydrate-bearing sediments during hydrate production by depressurization. Journal of Petroleum Science and Engineering, 2019, 177: 971-982 doi: 10.1016/j.petrol.2019.03.012
    [31] Ng CWW, Baghbanrezvan S, Kadlicek T, et al. A state-dependant constitutive model for methane hydrate-bearing sediments inside the stability region. Geotechnique, 2019, 70(12): 1094-1108
    [32] 蒋明镜. 现代土力学研究的新视野——宏微观土力学. 岩土工程学报, 2019, 41(2): 195-254 (Jiang Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254 (in Chinese)
    [33] 韦昌富, 颜荣涛, 田慧会等. 天然气水合物开采的土力学问题: 现状与挑战. 天然气工业, 2020, 40(8): 116-132 (Wei Changfu, Yan Rongtao, Tian Huihui, et al. Geotechnical problems in exploitation of natural gas hydrate: Status and challenges. Natural Gas Industry, 2020, 40(8): 116-132 (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.08.009
    [34] Arismendi-Arrieta DJ, Valdes A, Prosmiti R. A systematic protocol for benchmarking guest-host interactions by first-principles computations: Capturing CO2 in clathrate hydrates. Chemistry-A European Journal, 2018, 24(37): 9353-9363 doi: 10.1002/chem.201800497
    [35] Huang Y, Liu Y, Su Y, et al. Dissociation mechanism of gas hydrates (I, II, H) of alkane molecules: A comparative molecular dynamics simulation. Molecular Simulation, 2015, 41(13): 1086-1094 doi: 10.1080/08927022.2014.940522
    [36] 刘昌岭, 孟庆国. 天然气水合物实验测试技术. 北京: 科学出版社, 2016

    (Liu Changling, Meng Qingguo. Experimental Testing Technology of Natural gas Hydrate. Beijing: Science Press, 2016 (in Chinese))
    [37] Vlasic TM, Servio P, Rey AD. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state. AIP Advances, 2016, 6(8): 085317 doi: 10.1063/1.4961728
    [38] Strobel TA, Hester KC, Koh CA, et al. Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chemical Physics Letters, 2009, 478(4-6): 97-109 doi: 10.1016/j.cplett.2009.07.030
    [39] Dunstan DJ, Bushby AJ. Grain size dependence of the strength of metals: The hall-petch effect does not scale as the inverse square root of grain size. International Journal of Plasticity, 2014, 53: 56-65 doi: 10.1016/j.ijplas.2013.07.004
    [40] Stern LA, Kirby SH, Durham WB. Polycrystalline methane hydrate: Synthesis from superheated ice, and low-temperature mechanical properties. Energy & Fuels, 1998, 12(2): 201-211
    [41] Klapp SA, Klein H, Kuhs WF. First determination of gas hydrate crystallite size distributions using high-energy synchrotron radiation. Geophysical Research Letters, 2007, 34: L13608
    [42] Durham WB, Stern LA, Kirby SH. Ductile flow of methane hydrate. Canadian Journal of Physics, 2003, 81(1): 373-380
    [43] Atig D, Broseta D, Pereira JM, et al. Contactless probing of polycrystalline methane hydrate at pore scale suggests weaker tensile properties than thought. Nature Communications, 2020, 11: 3379 doi: 10.1038/s41467-020-16628-4
    [44] Taylor CJ, Dieker LE, Miller KT, et al. Micromechanical adhesion force measurements between tetrahydrofuran hydrate particles. Journal of Colloid and Interface Science, 2007, 306(2): 255-261 doi: 10.1016/j.jcis.2006.10.078
    [45] Aman ZM, Leith WJ, Grasso GA, et al. Adhesion force between cyclopentane hydrate and mineral surfaces. Langmuir, 2013, 29(50): 15551-15557 doi: 10.1021/la403489q
    [46] 彭力, 李维, 宁伏龙等. 基于原子力显微镜的四氢呋喃水合物微观力学测试. 中国科学: 技术科学, 2020, 50(1): 31-40 (Peng Li, Li Wei, Ning Fulong, et al. Micromechanical tests of tetrahydrofuran hydrate using atomic force microscope. Scientia Sinica: Technologica, 2020, 50(1): 31-40 (in Chinese) doi: 10.1360/SST-2019-0170
    [47] Aman ZM, Olcott K, Pfeiffer K, et al. Surfactant adsorption and interfacial tension investigations on cyclopentane hydrate. Langmuir, 2013, 29(8): 2676-2682 doi: 10.1021/la3048714
    [48] Liu F, Sturm JM, Lee CJ, et al. Coexistence of ice clusters and liquid-like water clusters on the Ru(0001) surface. Physical Chemistry Chemical Physics, 2017, 19(12): 8288-8299 doi: 10.1039/C6CP07369G
    [49] Pittenger B, Fain SC, Cochran MJ, et al. Premelting at ice-solid interfaces studied via velocity-dependent indentation with force microscope tips. Physical Review B, 2001, 63(13): 134102 doi: 10.1103/PhysRevB.63.134102
    [50] Chaouachi M, Falenty A, Sell K, et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy. Geochemistry Geophysics Geosystems, 2015, 16(6): 1711-1722 doi: 10.1002/2015GC005811
    [51] Anklam MR, York JD, Helmerich L, et al. Effects of antiagglomerants on the interactions between hydrate particles. Aiche Journal, 2008, 54(2): 565-574 doi: 10.1002/aic.11378
    [52] Liu C, Li M, Chen L, et al. Experimental investigation on the interaction forces between clathrate hydrate particles in the presence of a water bridge. Energy & Fuels, 2017, 31(5): 4981-4988
    [53] Yang SO, Kleehammer DM, Huo Z, et al. Temperature dependence of particle-particle adherence forces in ice and clathrate hydrates. Journal of Colloid & Interface Science, 2004, 277(2): 335-341
    [54] Liu C, Li Y, Wang W, et al. Modeling the micromechanical interactions between clathrate hydrate particles and water droplets with reducing liquid volume. Chemical Engineering Science, 2017, 163: 44-55 doi: 10.1016/j.ces.2017.01.031
    [55] Aman ZM, Joshi SE, Sloan ED, et al. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties. Journal of Colloid & Interface Science, 2012, 376(1): 283-288
    [56] Shi Q, Cao P, Han Z, et al. Role of guest molecules in the mechanical properties of clathrate hydrates. Crystal Growth & Design, 2018, 18(11): 6729-6741
    [57] Cao P, Wu J, Zhang Z, et al. Mechanical properties of methane hydrate: Intrinsic differences from ice. Journal of Physical Chemistry C, 2018, 122(51): 29081-29093 doi: 10.1021/acs.jpcc.8b06002
    [58] Cladek BR, Everett SM, Mcdonnell MT, et al. Guest-host interactions in mixed CH4-CO2 hydrates: Insights from molecular dynamics simulations. Journal of Physical Chemistry C, 2018, 122(34): 19575-19583 doi: 10.1021/acs.jpcc.8b05228
    [59] Cao P, Ning F, Wu J, et al. Mechanical response of nanocrystalline ice-contained methane hydrates: Key role of water ice. ACS Applied Materials & Interfaces, 2020, 12(12): 14016-14028
    [60] Wu J, Ning F, Trinh TT, et al. Mechanical instability of monocrystalline and polycrystalline methane hydrates. Nature Communications, 2015, 6: 8743 doi: 10.1038/ncomms9743
    [61] Song W, Sun X, Zhou G, et al. Molecular dynamics simulation study of N2/CO2 displacement process of methane hydrate. Chemistry Select, 2020, 5(44): 13936-13950
    [62] Lauricella M, Meloni S, English NJ, et al. Methane clathrate hydrate nucleation mechanism by advanced molecular simulations. Journal of Physical Chemistry C, 2014, 118(40): 22847-22857 doi: 10.1021/jp5052479
    [63] Veesam SK, Ravipati S, Punnathanam SN. Recent advances in thermodynamics and nucleation of gas hydrates using molecular modeling. Current Opinion in Chemical Engineering, 2019, 23: 14-20 doi: 10.1016/j.coche.2019.01.003
    [64] Fang B, Ning F, Ou W, et al. The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study. Fuel, 2019, 258: 116106 doi: 10.1016/j.fuel.2019.116106
    [65] Ning F, Glavatskiy K, Ji Z, et al. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2014, 17(4): 2869-2883
    [66] Fang B, Ning F, Cao P, et al. Modeling thermodynamic properties of propane or tetrahydrofuran mixed with carbon dioxide or methane in structure-II clathrate hydrates. The Journal of Physical Chemistry C, 2017, 121(43): 23911-23925 doi: 10.1021/acs.jpcc.7b06623
    [67] Lv J, Zhao J, Jiang L, et al. A review of micro computed tomography studies on the gas hydrate pore habits and seepage properties in hydrate bearing sediments. Journal of Natural Gas Science and Engineering, 2020, 83: 103555 doi: 10.1016/j.jngse.2020.103555
    [68] Helgerud MB, Dvorkin J, Nur A, et al. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophysical Research Letters, 1999, 26(13): 2021-2024 doi: 10.1029/1999GL900421
    [69] Yun TS, Santamarina JC, Ruppel C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. Journal of Geophysical Research: Solid Earth, 2007, 112(B4): B04106
    [70] Clayton CRI, Priest JA, Rees EVL. The effects of hydrate cement on the stiffness of some sands. Geotechnique, 2010, 60(6): 435-445 doi: 10.1680/geot.2010.60.6.435
    [71] Hyodo M, Li Y, Yoneda J, et al. Mechanical behavior of gas-saturated methane hydrate-bearing sediments. Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5185-5194 doi: 10.1002/2013JB010233
    [72] Choi JH, Dai S, Cha JH, et al. Laboratory formation of noncementing hydrates in sandy sediments. Geochemistry Geophysics Geosystems, 2014, 15(4): 1648-1656 doi: 10.1002/2014GC005287
    [73] 贺洁, 蒋明镜. 孔隙填充型能源土的宏微观力学特性真三轴试验离散元分析. 岩土力学, 2016, 37(10): 3026-3034,3040 (He Jie, Jing Mingjing. Macro-micro mechanical property of pore-filling type methane hydrate-bearingsediment in true triaxial tests based on distinct element analysis. Rock and Soil Mechanics, 2016, 37(10): 3026-3034,3040 (in Chinese)
    [74] Wang B, Fan Z, Wang P, et al. Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation. Applied Energy, 2018, 227: 624-633 doi: 10.1016/j.apenergy.2017.09.109
    [75] Terzariol M, Park J, Castro GM, et al. Methane hydrate-bearing sediments: Pore habit and implications. Marine and Petroleum Geology, 2020, 116: 104302 doi: 10.1016/j.marpetgeo.2020.104302
    [76] Dai J, Xu H, Snyder F, et al. Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico. Leading Edge, 2004, 23(1): 60-66 doi: 10.1190/1.1645456
    [77] Lei L, Santamarina JC. Physical properties of fine-grained sediments with segregated hydrate lenses. Marine and Petroleum Geology, 2019, 109: 899-911 doi: 10.1016/j.marpetgeo.2019.08.053
    [78] Lei L, Seol Y. Pore-scale investigation of methane hydrate-bearing sediments under triaxial condition. Geophysical Research Letters, 2020, 47(5): e2019GL086448
    [79] Yoneda J, Masui A, Konno Y, et al. Mechanical behavior of hydrate-bearing pressure-core sediments visualized under triaxial compression. Marine and Petroleum Geology, 2015, 66: 451-459 doi: 10.1016/j.marpetgeo.2015.02.028
    [80] Yoneda J, Masui A, Tenma N, et al. Triaxial testing system for pressure core analysis using image processing technique. Review of Scientific Instruments, 2013, 84(11): 114503 doi: 10.1063/1.4831799
    [81] Yoneda J, Jin Y, Katagiri J, et al. Strengthening mechanism of cemented hydrate-bearing sand at microscales. Geophysical Research Letters, 2016, 43(14): 7442-7450 doi: 10.1002/2016GL069951
    [82] Wu P, Li Y, Liu W, et al. Microstructure evolution of hydrate-bearing sands during thermal dissociation and ensued impacts on the mechanical and seepage characteristics. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB019103
    [83] Li Y, Wu P, Liu W, et al. A microfocus x-ray computed tomography based gas hydrate triaxial testing apparatus. Review of Scientific Instruments, 2019, 90(5): 055106 doi: 10.1063/1.5095812
    [84] Seol Y, Lei L, Choi JH, et al. Integration of triaxial testing and pore-scale visualization of methane hydrate bearing sediments. Review of Scientific Instruments, 2019, 90(12): 124504 doi: 10.1063/1.5125445
    [85] Wu P, Li Y, Liu W, et al. Cementation failure behavior of consolidated gas hydrate-bearing sand. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018623
    [86] 于彦江, 罗强, 宁伏龙等. 基于直接测量的水合物储层颗粒间作用力测试系统与测试方法. 中国石油大学学报(自然科学版), 2021, 45(1): 87-93 (Yu Yanjiang, Luo Qiang, Ning Fulong, et al. Direct measurement of the interaction forces between sediment particles in gas hydrate reservoirs. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(1): 87-93 (in Chinese)
    [87] 彭力, 宁伏龙, 李维等. 用原子力显微镜研究温度和接触界面对THF水合物形貌的影响. 中国科学: 物理学 力学 天文学, 2019, 49(3): 144-152 (Peng Li, Ning Fulong, Li Wei, et al. Investigation on the effect of growth temperature and contact interface on surface characteristics of THF clathrate hydrates by atomic force microscopy. Scientia Sinica:Physica,Mechanica &Astronomica, 2019, 49(3): 144-152 (in Chinese)
    [88] Jung JW, Santamarina JC. Hydrate adhesive and tensile strengths. Geochemistry Geophysics Geosystems, 2011, 12(8): Q08003
    [89] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用. 北京: 中国建筑工业出版社, 2018

    (Shi Chong, Zhang Qiang, Wang Shengnian. Numerical simulation technology and application of Particle Flow Code(PFC5.0). Beijing: China Architecture & Building Press, 2018 (in Chinese))
    [90] 李俊键, 成宝洋, 刘仁静等. 基于数字岩心的孔隙尺度砂砾岩水敏微观机理. 石油学报, 2019, 40(5): 594-603 (Li Junjian, Cheng Baoxiang, Liu Renning, et al. Microscopic mechanism of water sensitivity of pore-scale sandy conglomerate based on digital core. Acta Petrolei Sinica, 2019, 40(5): 594-603 (in Chinese)
    [91] 刘标, 姚素平, 胡文瑄等. 核磁共振冻融法表征非常规油气储层孔隙的适用性. 石油学报, 2017, 38(12): 1401-1410 (Liu Biao, Yao Suping, Hu Wenxuan, et al. Application of nuclear magnetic resonance cryoporometry in unconventional reservoir rocks. Acta Petrolei Sinica, 2017, 38(12): 1401-1410 (in Chinese) doi: 10.7623/syxb201712007
    [92] Oda M, Konishi J, Nemat-Nasser S. Experimental micromechanical evaluation of the strength of granular materials: Effects of particle rolling. Mechanics of Materials, 1982, 1(4): 269-283 doi: 10.1016/0167-6636(82)90027-8
    [93] 王辉, 周子钰, 周博等. 颗粒抗滚动作用对水合物沉积物宏观及微观力学特性的影响. 石油学报, 2020, 41(7): 885-894 (Wang Hui, Zhou Ziyu, Zhou Bo, et al. Impact of rolling resistance effect of particles on macro/micro mechanical properties of hydrate-bearing sediments. Acta Petrolei Sinica, 2020, 41(7): 885-894 (in Chinese)
    [94] Shen Z, Jiang M. DEM simulation of bonded granular material. Part II: Extension to grain-coating type methane hydrate bearing sand. Computers and Geotechnics, 2016, 75: 225-243 doi: 10.1016/j.compgeo.2016.02.008
    [95] 蒋明镜, 刘俊, 申志福. 裹覆型能源土力学特性真三轴试验离散元数值分析. 中国科学: 物理学 力学 天文学, 2019, 49(3): 153-164 (Jiang Mingjing, Liu Jun, Shen Zhifu. Investigating the mechanical behavior of grain-coating type methane hydrate bearing sediment in true triaxial compression tests by distinct element method. Scientia Sinica:Physica,Mechanica &Astronomica, 2019, 49(3): 153-164 (in Chinese)
    [96] 王璇, 徐明. 胶结型含可燃冰砂土剪切特性的离散元模拟. 工程力学, 2021, 38(2): 44-51 (Wang Xuan, Xu Ming. Discrete element simulation of the shear behavior of cemented methane hydrate-bearing sands. Engineering Mechanics, 2021, 38(2): 44-51 (in Chinese)
    [97] 蒋明镜, 肖俞, 朱方园. 深海能源土微观力学胶结模型及参数研究. 岩土工程学报, 2012, 34(9): 1574-1583 (Jiang Mingjing, Xiao Yu, Zhu Fangyuan. Micro-bond contact model and its parameters for the deep-sea methane hydrate bearing soils. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1574-1583 (in Chinese)
    [98] 蒋明镜, 贺洁, 周雅萍. 考虑水合物胶结厚度的深海能源土粒间胶结模型研究. 岩土力学, 2014, 35(5): 1231-1240 (Jiang Mingjing, He Jie, Zhou Yaping. Inter-particle bonded model of deep-sea methane hydrate-bearing soil considering methane hydrate bond thickness. Rock and Soil Mechanics, 2014, 35(5): 1231-1240 (in Chinese)
    [99] Jiang M, Chen H, Tapias M, et al. Study of mechanical behavior and strain localization of methane hydrate bearing sediments with different saturations by a new DEM model. Computers and Geotechnics, 2014, 57: 122-138 doi: 10.1016/j.compgeo.2014.01.012
    [100] Jiang M, He J, Wang J, et al. Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness. Comptes Rendus Mecanique, 2017, 345(12): 868-889 doi: 10.1016/j.crme.2017.09.003
    [101] Jiang M, Liu J, Kwok CY, et al. Exploring the undrained cyclic behavior of methane-hydrate-bearing sediments using CFD-DEM. Comptes Rendus Mecanique, 2018, 346(9): 815-832 doi: 10.1016/j.crme.2018.05.007
    [102] Cohen E, Klar A. A cohesionless micromechanical model for gas hydrate-bearing sediments. Granular Matter, 2019, 21(2): 36 doi: 10.1007/s10035-019-0887-5
    [103] 杨周洁, 周家作, 陈强等. 含水合物泥质粉细砂三轴试验及本构模型. 长江科学院院报, 2020, 37(12): 139-145 (Yang Zhoujie, Zhou Jiazuo, Chen Qiang, et al. Triaxial test and constitutive model for hydrate-bearing clayey sand. Journal of Yangtze River Scientific Research Institute, 2020, 37(12): 139-145 (in Chinese) doi: 10.11988/ckyyb.20190935
    [104] Liu Z, Wei H, Peng L, et al. An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: The direct shear test. Journal of Petroleum Science and Engineering, 2017, 149: 56-64 doi: 10.1016/j.petrol.2016.09.040
    [105] Wu P, Li Y, Sun X, et al. Mechanical characteristics of hydrate-bearing sediment: A review. Energy & Fuels, 2020, 35(2): 1041-1057
    [106] Yoneda J, Masui A, Konno Y, et al. Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the eastern Nankai trough. Marine and Petroleum Geology, 2015, 66: 471-486 doi: 10.1016/j.marpetgeo.2015.02.029
    [107] Ta XH, Yun TS, Muhunthan B, et al. Observations of pore-scale growth patterns of carbon dioxide hydrate using X-ray computed microtomography. Geochemistry, Geophysics, Geosystems, 2015, 16(3): 912-924 doi: 10.1002/2014GC005675
    [108] Kajiyama S, Wu Y, Hyodo M, et al. Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles. Journal of Natural Gas Science and Engineering, 2017, 45: 96-107 doi: 10.1016/j.jngse.2017.05.008
    [109] Pinkert S, Grozic JLH. Failure mechanisms in cemented hydrate-bearing sands. Journal of Chemical & Engineering Data, 2014, 60(2): 376-382
    [110] Leroueil S, Vaughan PR. The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 1990, 40(3): 467-488 doi: 10.1680/geot.1990.40.3.467
    [111] Airey DW. Triaxial testing of naturally cemented carbonate soil. Journal of Geotechnical Engineering, 1993, 119(9): 1379-1398 doi: 10.1061/(ASCE)0733-9410(1993)119:9(1379)
    [112] 杨期君, 赵春风. 水合物沉积物力学性质的三维离散元分析. 岩土力学, 2014, 35(1): 255-262 (Yang Qijun, Zhao Chunfeng. Three-dimensional discrete element analysis of mechanical behavior of methane hydrate-bearing sediments. Rock and Soil Mechanics, 2014, 35(1): 255-262 (in Chinese)
    [113] 蒋明镜, 彭镝, 申志福等. 深海能源土剪切带形成机理离散元分析. 岩土工程学报, 2014, 36(9): 1624-1630 (Jiang Mingjing, Peng Di, Shen Zhifu, et al. DEM analysis on formation of shear band of methane hydrate bearing soils. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1624-1630 (in Chinese)
    [114] Tang Q, Guo W, Chen H, et al. A discrete element simulation considering liquid bridge force to investigate the mechanical behaviors of methane hydrate-bearing clayey silt sediments. Journal of Natural Gas Science and Engineering, 2020, 83: 103571 doi: 10.1016/j.jngse.2020.103571
    [115] Jiang M, Liu J, Shen Z. DEM simulation of grain-coating type methane hydrate bearing sediments along various stress paths. Engineering Geology, 2019, 261: 105280 doi: 10.1016/j.enggeo.2019.105280
    [116] Wang D, Gong B, Jiang Y. The distinct elemental analysis of the microstructural evolution of a methane hydrate specimen under cyclic loading conditions. Energies, 2019, 12(19): 3694 doi: 10.3390/en12193694
    [117] Jiang M, Peng D, Ooi JY. DEM investigation of mechanical behavior and strain localization of methane hydrate bearing sediments with different temperatures and water pressures. Engineering Geology, 2017, 223: 92-109 doi: 10.1016/j.enggeo.2017.04.011
    [118] Jiang Y, Gong B. Discrete-element numerical modelling method for studying mechanical response of methane-hydrate-bearing specimens. Marine Georesources & Geotechnology, 2020, 38(9): 1082-1096
    [119] 陈合龙, 韦昌富, 田慧会等. 气饱和含CO2水合物砂的三轴压缩试验. 岩土力学, 2018, 39(7): 2395-2402 (Chen Helong, Wei Changfu, Tian Huihui, et al. Triaxial compression tests on gas saturated CO2-hydrate-bearing sand. Rock and Soil Mechanics, 2018, 39(7): 2395-2402 (in Chinese)
    [120] 周世琛, 郇筱林, 陈宇琪等. 天然气水合物沉积物不排水剪切特性的离散元模拟. 石油学报, 2021, 42(1): 73-83 (Zhou Shichen, Huan Xiaolin, Chen Yuqi, et al. DEM simulation on undrained shear characteristics of natural gas hydrate bearing sediments. Acta Petrolei Sinica, 2021, 42(1): 73-83 (in Chinese)
    [121] 蒋明镜, 肖俞, 朱方园. 深海能源土宏观力学性质离散元数值模拟分析. 岩土工程学报, 2013, 35(1): 157-163 (Jiang Mingjing, Xiao Yu, Zhu Fangyuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate bearing soils by DEM. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163 (in Chinese)
    [122] 蒋明镜, 贺洁, 申志福. 甲烷水合物三维离散元模拟参数反演初探. 岩土工程学报, 2014, 36(4): 736-744 (Jiang Mingjing, He Jie, Shen Zhifu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 736-744 (in Chinese)
    [123] Jiang M, Fu C, Cui L, et al. DEM simulations of methane hydrate exploitation by thermal recovery and depressurization methods. Computers and Geotechnics, 2016, 80: 410-426 doi: 10.1016/j.compgeo.2016.05.011
    [124] Jiang M, Shen Z, Wu D. CFD-DEM simulation of submarine landslide triggered by seismic loading in methane hydrate rich zone. Landslides, 2018, 15(11): 2227-2241 doi: 10.1007/s10346-018-1035-8
    [125] Li Y, Liu C, Liu L, et al. Experimental study on evolution behaviors of triaxial-shearing parameters for hydrate-bearing intermediate fine sediment. Advances in Geo-Energy Research, 2018, 2(1): 43-52 doi: 10.26804/ager.2018.01.04
    [126] Yan R, Wei C. Constitutive model for gas hydrate-bearing soils considering hydrate occurrence habits. International Journal of Geomechanics, 2017, 17(8): 04017032 doi: 10.1061/(ASCE)GM.1943-5622.0000914
    [127] 颜荣涛, 梁维云, 韦昌富等. 考虑赋存模式影响的含水合物沉积物的本构模型研究. 岩土力学, 2017, 38(1): 10-18 (Yan Rongtao, Liang Weiyun, Wei Changfu, et al. A constitutive model for gas hydrate-bearing sediments considering hydrate occurring habits. Rock and Soil Mechanics, 2017, 38(1): 10-18 (in Chinese)
    [128] Shen J, Chiu CF, Ng CWW, et al. A state-dependent critical state model for methane hydrate-bearing sand. Computers and Geotechnics, 2016, 75: 1-11 doi: 10.1016/j.compgeo.2016.01.013
    [129] Gai X, Sanchez M. A geomechanical model for gas hydrate-bearing sediments. Environmental Geotechnics, 2017, 4(2): 143-156 doi: 10.1680/jenge.15.00050
    [130] 袁庆盟, 孔亮, 赵亚鹏. 考虑水合物填充和胶结效应的深海能源土弹塑性本构模型. 岩土力学, 2020, 41(7): 2304-2312,2341 (Yuan Qingmeng, Kong Liang, Zhao Yapeng. An elastoplastic model for energy soils considering filling and bonding effects. Rock and Soil Mechanics, 2020, 41(7): 2304-2312,2341 (in Chinese)
    [131] Sanchez M, Gai X, Santamarina JC. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms. Computers and Geotechnics, 2017, 84: 28-46 doi: 10.1016/j.compgeo.2016.11.012
    [132] Fang H, Shi K, Yu Y. Geomechanical constitutive modelling of gas hydrate-bearing sediments by a state-dependent multishear bounding surface model. Journal of Natural Gas Science and Engineering, 2020, 75: 103119 doi: 10.1016/j.jngse.2019.103119
    [133] Cohen E, Klar A, Yamamoto K. Micromechanical investigation of stress relaxation in gas hydrate-bearing sediments due to sand production. Energies, 2019, 12(11): 2131 doi: 10.3390/en12112131
    [134] De La Fuente M, Vaunat J, Marin-Moreno H. A densification mechanism to model the mechanical effect of methane hydrates in sandy sediments. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(6): 782-802 doi: 10.1002/nag.3038
    [135] 吴二林, 魏厚振, 颜荣涛等. 考虑损伤的含天然气水合物沉积物本构模型. 岩石力学与工程学报, 2012, 31(S1): 3045-3050 (Wu Erlin, Wei Houzhen, Yan Rongtao, et al. Constitutive model for gas hydrate-bearing sediments considering damage. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3045-3050 (in Chinese)
    [136] Yu F, Song Y, Liu W, et al. Analyses of stress strain behavior and constitutive model of artificial methane hydrate. Journal of Petroleum Science and Engineering, 2011, 77(2): 183-188 doi: 10.1016/j.petrol.2011.03.004
    [137] 祝效华, 孙汉文, 赵金洲等. 天然气水合物沉积物等效变弹性模量损伤本构模型. 石油学报, 2019, 40(9): 1085-1094 (Zhu Xiaohua, Sun Hanwen, Zhao Jinzhou, et al. Damage constitutive mode of equivalent variable elastic modulus for gas hydrate sediments. Acta Petrolei Sinica, 2019, 40(9): 1085-1094 (in Chinese)
    [138] Ma T, Yang C, Chen P, et al. On the damage constitutive model for hydrated shale using CT scanning technology. Journal of Natural Gas Science and Engineering, 2016, 28: 204-214 doi: 10.1016/j.jngse.2015.11.025
    [139] 张小玲, 夏飞, 杜修力等. 考虑含水合物沉积物损伤的多场耦合模型研究. 岩土力学, 2019, 40(11): 4229-4239,4305 (Zhang Xiaoling, Xia Fei, Du Xiuli, et al. Study on multi-field coupling model considering damage of hydrate-bearing sediments. Rock and Soil Mechanics, 2019, 40(11): 4229-4239,4305 (in Chinese)
    [140] Yuan Q, Kong L, Xu R, et al. A state-dependent constitutive model for gas hydrate-bearing sediments considering cementing effect. Journal of Marine Science and Engineering, 2020, 8(8): 621 doi: 10.3390/jmse8080621
    [141] 张峰, 刘丽华, 吴能友等. 细砂质含水合物沉积介质的非线性弹性力学模型. 海洋地质与第四纪地质, 2019, 39(3): 193-198 (Zhang Feng, Liu Lihua, Wu Nengyou, et al. A nonlinear elastic model for fine sandy hydrate-bearing sediments. Marine Geology & Quaternary Geology, 2019, 39(3): 193-198 (in Chinese)
    [142] 刘乐乐, 张旭辉, 刘昌岭等. 含水合物沉积物三轴剪切试验与损伤统计分析. 力学学报, 2016, 48(3): 720-729 (Liu Lele, Zhang Xuhui, Liu Changling, et al. Triaxial shear tests and statistical analyses of damage for methane hydrate-bearing sediments. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729 (in Chinese)
    [143] Li Y, Hu G, Wu N, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea. Acta Oceanologica Sinica, 2019, 38(3): 114-123 doi: 10.1007/s13131-019-1404-8
    [144] Dong L, Li Y, Liu C, et al. Mechanical properties of methane hydrate-bearing interlayered sediments. Journal of Ocean University of China, 2019, 18(6): 1344-1350 doi: 10.1007/s11802-019-3929-z
    [145] Wu Y, Li N, Hyodo M, et al. Modeling the mechanical response of gas hydrate reservoirs in triaxial stress space. International Journal of Hydrogen Energy, 2019, 44(48): 26698-26710 doi: 10.1016/j.ijhydene.2019.08.119
    [146] 业渝光, 刘昌岭. 天然气水合物实验技术及应用. 北京: 地质出版社, 2011

    (Ye Yuguang, Liu Changling. Experimental Technology And Application of Natural gas Hydrate. Beijing: Geological Publishing House, 2011 (in Chinese))
    [147] Zhang X, Liu L, Zhou J, et al. Model for the elastic modulus of hydrate-bearing sediments. International Journal of Offshore and Polar Engineering, 2015, 25(4): 314-319
    [148] 董怀民, 孙建孟, 林振洲等. 基于CT扫描的天然气水合物储层微观孔隙结构定量表征及特征分析. 中国石油大学学报(自然科学版), 2018, 42(6): 40-49 (Dong Huaimin, Sun Jianmeng, Lin Zhenzhou, et al. Quantitative characterization and characteristics analysis of microscopicpore structure in natural gas hydrate based on CT scanning. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(6): 40-49 (in Chinese)
    [149] Lei L, Seol Y, Choi JH, et al. Pore habit of methane hydrate and its evolution in sediment matrix-laboratory visualization with phase-contrast micro-CT. Marine and Petroleum Geology, 2019, 104: 451-467 doi: 10.1016/j.marpetgeo.2019.04.004
    [150] Kerkar PB, Horvat K, Jones KW, et al. Imaging methane hydrates growth dynamics in porous media using synchrotron X-ray computed microtomography. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4759-4768 doi: 10.1002/2014GC005373
    [151] Chen X, Espinoza DN. Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate. Fuel, 2018, 214: 614-622 doi: 10.1016/j.fuel.2017.11.065
    [152] Schindler M, Batzle ML, Prasad M. Micro X-ray computed tomography imaging and ultrasonic velocity measurements in tetrahydrofuran-hydrate-bearing sediments. Geophysical Prospecting, 2017, 65(4): 1025-1036 doi: 10.1111/1365-2478.12449
    [153] Zhao J. Micro-CT scanning of gas hydrate decomposition in model porous media. Chemistry and Technology of Fuels and Oils, 2017, 53(4): 600-609 doi: 10.1007/s10553-017-0840-4
    [154] Arzbacher S, Petrasch J, Ostermann A, et al. Micro-tomographic investigation of ice and clathrate formation and decomposition under thermodynamic monitoring. Materials, 2016, 9(8): 668 doi: 10.3390/ma9080668
    [155] 王海涛, 杨叶, 张晋言等. 地质多孔介质成像技术现状与进展. 地球物理学进展, 2019, 34(1): 191-199 (Wang Haitao, Yang Ye, Zhang Jinyan, et al. Current state and progress in imaging the microstructure of geologicalporous media. Progress in Geophysics, 2019, 34(1): 191-199 (in Chinese)
    [156] 刘昌岭, 孟庆国, 李承峰等. 南海北部陆坡天然气水合物及其赋存沉积物特征. 地学前缘, 2017, 24(4): 41-50 (Liu Changling, Meng Qingguo, Li Chengfeng, et al. Characterization of natural gas hydrate and its deposits recovered from the northern slope of the South China Sea. Earth Science Frontiers, 2017, 24(4): 41-50 (in Chinese)
    [157] Ren J, Lu Z, Long Z, et al. Experimental study on the kinetic effect of N-butyl-N-methylpyrrolidinium tetrafluoroborate and poly(N-vinyl-caprolactam) on CH4 hydrate formation. RSC Advances, 2020, 10(26): 15320-15327 doi: 10.1039/C9RA10998F
    [158] Xu CG, Yan R, Fu J, et al. Insight into micro-mechanism of hydrate-based methane recovery and carbon dioxide capture from methane-carbon dioxide gas mixtures with thermal characterization. Applied Energy, 2019, 239: 57-69 doi: 10.1016/j.apenergy.2019.01.087
    [159] 刘昌岭, 孟庆国. X射线衍射法在天然气水合物研究中的应用. 岩矿测试, 2014, 33(4): 468-479 (Liu Changling, Meng Qingguo. Applications of X-ray diffraction in natural gas hydrate research. Rock and Mineral Analysis, 2014, 33(4): 468-479 (in Chinese) doi: 10.3969/j.issn.0254-5357.2014.04.003
    [160] 孟庆国, 刘昌岭, 李承峰等. 常见客体分子对笼型水合物晶格常数的影响. 物理化学学报, 2020, 36(11): 72-78 (Meng Qingguo, Liu Changling, Li Chengfeng, et al. Effect of common guest molecules on the lattice constants of clathrate hydrates. Acta Physico-Chimica Sinica, 2020, 36(11): 72-78 (in Chinese)
    [161] Murshed MM, Kuhs WF. Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy. Journal of Physical Chemistry B, 2009, 113(15): 5172-5180 doi: 10.1021/jp810248s
    [162] Takeya S, Uchida T, Nagao J, et al. Particle size effect of hydrate for self-preservation. Chemical Engineering Science, 2005, 60(5): 1383-1387 doi: 10.1016/j.ces.2004.10.011
    [163] 张永超, 刘昌岭, 吴能友等. 含水合物沉积物孔隙结构特征与微观渗流模拟研究. 海洋地质前沿, 2020, 36(9): 23-33 (Zhang Yongchao, Liu Changling, Wu Nengyou, et al. Advances in the pore-structure characteristics and micro-scopic seepage numerical simulation of the hydrate-bearing sediments. Marine Geology Frontiers, 2020, 36(9): 23-33 (in Chinese)
    [164] Rojas Y, Lou X. Instrumental analysis of gas hydrates properties. ASZA-Pacific Journal of Chemical Engineering, 2010, 5(2): 310-323 doi: 10.1002/apj.293
    [165] 刘昌岭, 郝锡荦, 孟庆国等. 气体水合物基础特性研究进展. 海洋地质前沿, 2020, 36(9): 1-10 (Liu Changling, Hao Xiluo, Meng Qingguo, et al. Research progress in basic characteristics of gas hydrate. Marine Geology Frontiers, 2020, 36(9): 1-10 (in Chinese)
    [166] Binnig GK, Quate CF, Gerber C. The atomic force microscope. Physical Review Letters, 1986, 56(9): 930-933 doi: 10.1103/PhysRevLett.56.930
    [167] Zhang H, Huang J, Wang Y, et al. Atomic force microscopy for two-dimensional materials: A tutorial review. Optics Communications, 2018, 406: 3-17 doi: 10.1016/j.optcom.2017.05.015
    [168] 高扬. 原子力显微镜在二维材料力学性能测试中的应用综述. 力学学报, 2021, 53(4): 929-943 (Gao Yang. Review of the application of atomic force microscopy in testing the mechanical properties of two-dimensional materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 929-943 (in Chinese) doi: 10.6052/0459-1879-20-354
    [169] Peng L, Ning F, Li W, et al. Influence of AFM tip temperature on THF hydrate stability: Theoretical model and numerical simulation. Scanning, 2019, 2019: 1694169
    [170] Huang X, Li Z, Deng Y, et al. Effect of micro-nano bubble on the crystallization of THF hydrate based on the observation by atomic force microscopy. Journal of Physical Chemistry C, 2020, 124(25): 13966-13975 doi: 10.1021/acs.jpcc.0c00181
    [171] 刘海红, 李玉星, 王武昌等. 天然气水合物颗粒微观受力及聚集特性研究进展. 化工进展, 2013, 32(8): 1796-1800,1812 (Liu Haihong, LI Yuxing, Wang Wuchang, et al. Microscopic force and agglomeration of natural gas hydrate particles. Chemical Industry and Engineering Progress, 2013, 32(8): 1796-1800,1812 (in Chinese)
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  68
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-03
  • 录用日期:  2021-05-22
  • 网络出版日期:  2021-05-23
  • 刊出日期:  2021-08-18

目录

    /

    返回文章
    返回