EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶磁流变液阻尼器模型的车辆悬架组合控制

张文静 牛江川 申永军 温少芳

张文静, 牛江川, 申永军, 温少芳. 基于分数阶磁流变液阻尼器模型的车辆悬架组合控制. 力学学报, 2021, 53(8): 1-10 doi: 10.6052/0459-1879-21-137
引用本文: 张文静, 牛江川, 申永军, 温少芳. 基于分数阶磁流变液阻尼器模型的车辆悬架组合控制. 力学学报, 2021, 53(8): 1-10 doi: 10.6052/0459-1879-21-137
Zhang Wenjing, Niu Jiangchuan, Shen Yongjun, Wen Shaofang. combined control of vehicle suspension with fractional-order magnetorheological fluid damper model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 1-10 doi: 10.6052/0459-1879-21-137
Citation: Zhang Wenjing, Niu Jiangchuan, Shen Yongjun, Wen Shaofang. combined control of vehicle suspension with fractional-order magnetorheological fluid damper model . Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 1-10 doi: 10.6052/0459-1879-21-137

基于分数阶磁流变液阻尼器模型的车辆悬架组合控制

doi: 10.6052/0459-1879-21-137
基金项目: 国家自然科学基金(11872254, U1934201, 12072206)、河北省自然科学基金(A2021210012)资助项目
详细信息
    作者简介:

    牛江川, 教授, 主要研究方向: 机械系统动力学与振动控制. E-mail: menjc@163.com

  • 中图分类号: O322, O328

COMBINED CONTROL OF VEHICLE SUSPENSION WITH FRACTIONAL-ORDER MAGNETORHEOLOGICAL FLUID DAMPER MODEL

  • 摘要: 磁流变液阻尼器的分数阶Bingham模型结构形式简单, 而且可以更好地描述系统的滞回特性. 建立了含有分数阶Bingham模型的单自由度1/4车辆悬架系统模型, 利用磁流变液阻尼器对在路面简谐激励下的非线性车辆悬架系统进行振动控制. 研究了含有分数阶Bingham模型的悬架系统在天棚阻尼半主动控制下的主共振响应, 利用平均法得到了系统的近似解析解. 求解了系统定常解的幅频响应方程, 并根据李雅普诺夫稳定性理论得到了悬架系统的稳定性条件. 通过绘制数值解和解析解的幅频响应曲线对比图, 验证了近似解析解的正确性. 利用簧载质量垂直方向的加速度均方根值分析了半主动控制对车辆乘坐舒适性的影响, 发现天棚阻尼半主动控制策略在低频激励区域反而会降低车辆的乘坐舒适性. 因此提出了一种被动控制与半主动控制相结合的组合控制策略, 并分析了半主动控制参数对振动控制效果的影响. 分析结果表明, 该组合控制策略不但能够提高车辆的乘坐舒适性, 而且能有效抑制悬架系统的主共振振动幅值.

     

  • 图  1  非线性车辆悬架系统

    Figure  1.  Nonlinear vehicle suspension system

    图  2  系统在被动控制下的幅频响应

    Figure  2.  Amplitude-frequency response of system under passive control

    图  3  系统在半主动控制下的幅频响应

    Figure  3.  Amplitude-frequency response of system under semi-active control

    图  4  加速度均方根值

    Figure  4.  RMS of acceleration

    图  5  簧载质量的加速度时间历程

    Figure  5.  Acceleration time history of sprung mass

    图  6  系统在组合控制下的幅频响应

    Figure  6.  Amplitude-frequence response curves of system under combined control

    图  7  不同控制策略下的幅频响应

    Figure  7.  Amplitude-frequence response curves under different control strategies

    图  8  b变化时对组合控制的影响

    Figure  8.  Effect of combined control with different b

  • [1] Prabakar RS, Sujatha C, Narayanan S. Response of a quarter car model with optimal magnetorheological damper parameters. Journal of Sound and Vibration, 2013, 332: 2191-2206 doi: 10.1016/j.jsv.2012.08.021
    [2] Du HP, Li WH, Zhang N. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator. Smart Materials and Structures, 2011, 20(10): 105003 doi: 10.1088/0964-1726/20/10/105003
    [3] 李惠, 刘敏, 欧进萍等. 斜拉索磁流变智能阻尼控制系统分析与设计. 中国公路学报, 2005, 18(4): 37-41 (Li Hui, Liu Min, Ou Jinpin, et al. Analysis and design of magnetorheological intelligent damping control system for stay cables. China Journal of Highway and Transport, 2005, 18(4): 37-41 (in Chinese) doi: 10.3321/j.issn:1001-7372.2005.04.008
    [4] Dyke SJ, Spencer Jr BF, Sain MK, et al. Modeling and control of magnetorheological dampers for seiamic response reduction. Smart Materials and Structures, 1996, 5(5): 565-575 doi: 10.1088/0964-1726/5/5/006
    [5] Xiao ZR, Zhang ZW, Quansah A. Combined Identification of Parameters in the Mechanical Model of Magnetorheological Damper. Journal of Civil Engineering Research, 2019, 9(1): 16-24
    [6] Hu GL, Liu QJ, Li G, et al. Simulation and analysis of adjustable Sigmoid model for a typical magnetorheological damper. Machine Tool and Hydraulics Hydromechatronics Engineering, 2016, 44(24): 9-15
    [7] Ambhore N, Hivarale S, Pangavhane D. A study of Bouc-Wen model of magnetorheological fluid damper for vibration control. Interational Journal of Eeginerring Research and Technology, 2013, 2(2): 1-6
    [8] 刘晓梅, 李洪友, 黄宜坚. 磁流变阻尼器的分数阶Bingham模型研究. 机电工程, 2015, 32(3): 338-342 (Liu Xiaomei, Li Hongyou, Huang Yijian. Fractional derivative Bingham model of MR damper. Journal of Mechanical &Electrical Engineering, 2015, 32(3): 338-342 (in Chinese)
    [9] Liu XM, Huang YJ, Li HY, et al. Analysis of fractional derivative model for MR damping system. Applied Mechanics and Materials Vols, 2010, 29(32): 2102-2107
    [10] Sharma S. Vibration control in quarter-car model with magnetorheological (MR) dampers using Bingham model. Journal of Applied Mechanical Engineering, 2018, 7(1): 1000299
    [11] Tudon-Martinez JC, Hernandez-Alcantara D, Amezquita-Brooks L, et al. Magneto-rheological dampers—model inflfluence on the semi-active suspension performance. Smart Materials and Structures, 2019, 28: 105030 doi: 10.1088/1361-665X/ab39f2
    [12] Prabakar RS, Sujatha C, Narayana S. Response of a half-car model with optimal magnetorheological damper parameters. Journal of Vibration and Control, 2014, 5(8): 1-15
    [13] 李礼夫, 宋俊. 基于预瞄技术的汽车磁流变半主动悬架控制方法. 功能材料, 2006, 5(37): 796-798 (Li Lifu, Song Jun. Study on control method for semi active suspension vehicle via magneto rheological fluid damper based on preview. Journal of Functional Materials, 2006, 5(37): 796-798 (in Chinese)
    [14] Yang SP, Shen YJ. Recent advances in dynamics and control of hysteretic nonlinear systems. Chaos Solitons Fractals, 2009, 40(4): 1808-1822 doi: 10.1016/j.chaos.2007.09.064
    [15] Podlubny I. Fractional Differential Equations: Mathematics in Science and Engineering[M]. New York: Academic Press, 1999.
    [16] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析. 物理学报, 2012, 61(11): 1-6 (Shen Yongjun, Yang Shaopu, Xing Haijun. Dynamic analysis of linear single degree-of-freedom oscillator with fractional-order derivative. Actamic Physica Sinica, 2012, 61(11): 1-6 (in Chinese)
    [17] Chen LC, Li ZS, Zhuang QQ, et al. First-passage failure of single-degree of-freedom nonlinear oscillators with fractional derivative. Journal of Vibration and Control, 2012, 19(14): 2154-2163
    [18] Chen YQ, Vinagre BM, Podlubny I. Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review. Nonlinear Dynamics, 2004, 38: 155-170 doi: 10.1007/s11071-004-3752-x
    [19] Xu Y, Gu RC, Zhang HQ, et al. Chaos in diffusionless lorenz system with a fractional order and its control. International Journal of Bifurcation and Chaos, 2012, 22(4): 1-8
    [20] Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul, 2011, 16(3): 1140-1153 doi: 10.1016/j.cnsns.2010.05.027
    [21] Momani S. A numerical scheme for the solution of multiorder fractional differential equations. Applied Mathematics and Computation, 2006, 182: 761-770 doi: 10.1016/j.amc.2006.04.037
    [22] Shokooh A, Suarez L. A comparison of numerical methods applied to a fractional model of damping materials. Journal of Vibration and Control, 1999, 5(3): 331-354 doi: 10.1177/107754639900500301
    [23] Craiem D, Majin RL. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics. Physical Biology, 2010, 7: 013001 doi: 10.1088/1478-3975/7/1/013001
    [24] Vyawahare V A, Nataraj P. Fractional-order modeling of neutron transport in a nuclear reactor. Applied Mathematical Modelling, 2013, 37(23): 9747-9767 doi: 10.1016/j.apm.2013.05.023
    [25] Jia Z, Liu C. Fractional-order modeling and simulation of magnetic coupled boost converter in continuous conduction mode. International Journal of Bifurcation & Chaos, 2018, 28(05): 1850061
    [26] 陈明, 贾来兵, 尹协振. 描述鱼鳍材料松弛特性的分数Zener模型. 力学学报, 2011, 43(1): 217-220 (Chen Ming, Jia Laibing, Yin Xiezhen. Relaxation modulus of caual fin studied by fractional zener model. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 217-220 (in Chinese) doi: 10.6052/0459-1879-2011-1-lxxb2010-145
    [27] 蔡伟, 陈文. 复杂介质中任意阶频率依赖耗散声波的分数阶导数模型. 力学学报, 2016, 48(6): 1265-1280 (Cai Wei, Chen Wen. Fractional derivative modeling of frequency-dependent dissipative mdechanism for wave propagation in complex media. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1265-1280 (in Chinese) doi: 10.6052/0459-1879-16-186
    [28] 陈丙三, 刘成武, 江吉彬等. 基于分数阶的磁流变液粘弹性研究. 机械科学与技术, 2013, 32(9): 1378-1384 (Chen Bingsan, Liu Chengwu, Jiang Jibin, et al. Analyzing magnetorheological fluid's viscoelasticity using fractional order calculus. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(9): 1378-1384 (in Chinese)
    [29] Schiessel H, Metzler R, Blumen A. Nonnenmacher T F Generalized viscoelastic models: their fractional equations with solutions. Journal of Physics A: Mathematical and General, 1995, 28(23): 6567-6584 doi: 10.1088/0305-4470/28/23/012
    [30] Heymans N, Bauwens JC. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta, 1994, 33: 210-219 doi: 10.1007/BF00437306
    [31] Niu JC, Hou J, Shen YJ, et al. Dynamic analysis and vibration control of nonlinear boring bar with fractional-order model of magnetorheological fluid. International Journal of Non-Linear Mechanics, 2020, 121: 103459 doi: 10.1016/j.ijnonlinmec.2020.103459
    [32] 赵和平, 黄宏成, 习纲等. 非线性弹簧汽车悬架动态特性研究. 机械强度, 2001, 23(2): 165-167 (Zhao Heping, Huang Hongcheng, Xi Gang, et al. Dynmic characteristics of vehicle suspension with non-linear spring. Journal of Mechanical Strength, 2001, 23(2): 165-167 (in Chinese) doi: 10.3321/j.issn:1001-9669.2001.02.012
    [33] 李军, 李学鋆. 汽车悬架螺旋弹簧的设计与仿真分析. 华侨大学学报(自然科学版), 2017, 38(6): 753-759 (Li Jun, Li Xueyun. Design and simulation analysis of nonlinear coil spring for automobile suspension. Journal of Huaqiao University(Natural Science), 2017, 38(6): 753-759 (in Chinese)
    [34] 张勇. 半主动座椅悬架非线性控制研究[D]. 长春: 吉林大学, 2019.

    Zhang Yong. Research on nonlinear control of semi-active seat suspension[D]. Changchun: Jilin University, 2019(in Chinese)
    [35] Petras I. Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation[M]. Beijing: Higher Education Press, 2011.
    [36] 李韶华, 杨绍普. 采用改进 Bingham模型的非线性汽车悬架的主共振. 振动与冲击, 2006, 25(4): 109-128 (Li Shaohua, Yang Shaopu. Primary resonance of a nonlinear vehicle suspension system using a modified Bingham model. Journal of Vibration and Shock, 2006, 25(4): 109-128 (in Chinese) doi: 10.3969/j.issn.1000-3835.2006.04.029
    [37] Pang H, Zhang X, Yang JJ, et al. Adaptive backstepping-based control design for uncertain nonlinear active suspension system with input delay. Int J Robust Nonlinear, 2019: 1-20 doi: 10.1002/rnc.4695
    [38] Li SH, Yang SP, Guo WW. Investigation on chaotic motion in hysteretic non-linear suspension system with multi-frequency excitations. Mechanics Research Communications, 2004, 31: 229-236 doi: 10.1016/j.mechrescom.2003.10.002
    [39] 杨万福. 汽车理论[M]. 广州: 华南理工大学出版社, 2010.8, 145-149.

    Yang Wanfu. Automotive theory[M]. Guangzhou: South China University of Technology Press, 2010.8, 145-149(in Chinese)
  • 加载中
图(8)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 录用日期:  2021-07-05
  • 网络出版日期:  2021-07-21

目录

    /

    返回文章
    返回

    重要通知

    近日,本刊多次接到来电,称有不法网站冒充《力学学报》杂志官网,并向投稿人收取高额审稿费用。在此,我们郑重申明:

    1.《力学学报》官方网站(https://lxxb.cstam.org.cn/)是本刊唯一的投稿渠道,《力学学报》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

    2.《力学学报》在稿件录用前不以任何形式向作者收取包括审稿费、中介费等在内的任何费用!请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62536271。

    感谢大家多年来对《力学学报》的支持与厚爱,欢迎继续关注我们!