EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速MHD球头激波脱体距离理论求解

李逸翔 汪球 罗凯 李进平 赵伟

李逸翔, 汪球, 罗凯, 李进平, 赵伟. 高超声速MHD球头激波脱体距离理论求解. 力学学报, 2021, 53(9): 2493-2500 doi: 10.6052/0459-1879-21-127
引用本文: 李逸翔, 汪球, 罗凯, 李进平, 赵伟. 高超声速MHD球头激波脱体距离理论求解. 力学学报, 2021, 53(9): 2493-2500 doi: 10.6052/0459-1879-21-127
Li Yixiang, Wang Qiu, Luo Kai, Li Jinping, Zhao Wei. Theoretical analysis on hypersonic MHD shock stand-off distance of blunt body. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2493-2500 doi: 10.6052/0459-1879-21-127
Citation: Li Yixiang, Wang Qiu, Luo Kai, Li Jinping, Zhao Wei. Theoretical analysis on hypersonic MHD shock stand-off distance of blunt body. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2493-2500 doi: 10.6052/0459-1879-21-127

高超声速MHD球头激波脱体距离理论求解

doi: 10.6052/0459-1879-21-127
基金项目: 国家自然科学基金(12072352)和中国科学院青年创新促进会(2021020)资助项目
详细信息
    作者简介:

    汪球, 高级工程师, 主要研究方向: 高焓气动物理与应用. E-mail: wangqiu@imech.ac.cn

  • 中图分类号: O361.3

THEORETICAL ANALYSIS ON HYPERSONIC MHD SHOCK STAND-OFF DISTANCE OF BLUNT BODY

  • 摘要: 高超声速飞行器强激波后高温气体形成具有导电性的等离子体流场, 电离气体为磁场应用提供了直接工作环境, 磁流体流动控制技术利用外加磁场影响激波后的离子或电子运动规律, 这可以有效改善高超声速飞行器气动特性. 激波脱体距离作为高超声速磁流体流动控制较为直观的气动现象, 受到研究者重点关注; 磁场添加后激波脱体距离发生变化, 其变化幅度直接反映磁控效果, 然而基于高超声速磁流体流动控制的相关理论模型较少, 需要进一步发展. 本文基于低磁雷诺数假设和偶极子磁场分布的条件, 通过对连续方程沿径向积分以及对动量方程采用分离变量的方法, 推导了高超声速磁流体流动控制下的球头激波脱体距离解析表达式. 理论分析结果表明, 激波脱体距离随着磁相互作用系数的增加而变大; 随着来流速度的增加, 磁相互作用系数变为影响激波脱体距离大小的主要因素. 本文理论模型可以达到快速评估磁控效果的目的, 对高超声速磁流体流动控制实验方案设计和结果分析具有一定的指导意义.

     

  • 图  1  钝头体和激波结构示意图

    Figure  1.  Schematic of the blunt body and the shock

    图  2  均匀磁化球体磁感线分布示意图

    Figure  2.  Distribution of magnetic induction lines of uniformly magnetized sphere

    图  3  无量纲激波脱体距离$\bar \varDelta $与磁相互作用系数Q的关系曲线

    Figure  3.  The curve of dimensionless shock stand-off distance $\bar \varDelta $ vs. MHD interaction parameter Q

    图  4  无量纲激波脱体距离比$\bar \varDelta /{\bar \varDelta _{{\rm{NM}}}}$与磁相互作用系数Q的关系曲线

    Figure  4.  The curve of ratio of shock stand-off distance $\bar \varDelta /{\bar \varDelta _{{\rm{NM}}}}$ vs. MHD interaction parameter Q

    图  5  本文结果与Lykoudis结果对比图[25]

    Figure  5.  Comparison between results of this paper and the Lykoudis’s

    图  6  驻点处流动示意图

    Figure  6.  Schematic of flow near stagnation point

  • [1] 丁明松, 江涛, 刘庆宗等. 电导率模拟对高超声速MHD控制影响. 航空学报, 2019, 40(11): 123009 (Ding Mingsong, Jiang Tao, Liu Qingzong, et al. Influence of conductivity simulation on hypersonic MHD control. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 123009 (in Chinese)
    [2] 李益文, 张百灵, 李应红等. 磁流体动力学在航空工程中的应用与展望. 力学进展, 2017, 47(1): 452-502 (Li Yiwen, Zhang Bailing, Li Yinghong, et al. Application and prospect of magnetohydrodynamics in aeronautical engineering. Advances in Mechanics, 2017, 47(1): 452-502 (in Chinese)
    [3] 李开. 高温真实气体条件下的磁控热防护机理研究. [博士论文]. 长沙: 国防科学技术大学, 2017

    (Li Kai. Mechanism analysis of magnetohydrodynamic heat shield system including high temperature real gas effect. [PhD Thesis]. Changsha: National University of Defense Technology, 2017 (in Chinese))
    [4] 罗凯, 汪球, 李逸翔等. 基于高温气体效应的磁流体流动控制研究进展. 力学学报, 2021, 53(6): 1515-1531 (Luo Kai, Wang Qiu, Li Yixiang, et al. Research progress on magnetohydrodynamic flow control under test conditions with high temperature real gas effect. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531 (in Chinese) doi: 10.6052/0459-1879-21-067
    [5] Ziemer RW. Experimental investigation in magneto-aerodynamics. ARS Journal, 1959, 29(9): 642-647 doi: 10.2514/8.4856
    [6] Schramm JM, Hannemann K. Study of MHD effects in the high-enthalpy shock tunnel Göttingen (HEG) using a 30T-pulsed magnet system//31st International Symposium on Shock Waves, Nagoya, Japan, 2017
    [7] Gildfind DE, Smith D, Lewis SW, et al. Expansion tube magneto- hydrodynamic experiments with argon test gas. AIAA Paper 2018-3754, 2018
    [8] Seemann GR, Cambel AB. Observations concerning magnetoaero- dynamic drag and shock standoff distance. Proceedings of the National Academy of Sciences of the United States of America, 1966, 55(3): 457-465 doi: 10.1073/pnas.55.3.457
    [9] Chang CF, Kranc SC, Nowak RJ, et al. Theoretical and experimental studies of magneto-aerodynamic drag and shock standoff distance. NASA-CR-70315, 1966
    [10] Kawamura M, Matsuda A, Katsurayama H, et al. Experiment on drag enhancement for a blunt body with electrodynamic heat shield. Journal of Spacecraft and Rockets, 2009, 46(6): 1171-1177 doi: 10.2514/1.44230
    [11] Smith DR, Gildfind DE, James CM, et al. Magnetohydrodynamic drag force measurements in an expansion tube. AIAA Paper 2018-3755, 2018
    [12] Smith DR, Gildfind DE, Jacobs PA, et al. Magnetohydrodynamic drag measurements in an expansion tunnel with argon test gas. AIAA Journal, 2020, 58(10): 4495-4504 doi: 10.2514/1.J059540
    [13] Gülhan A, Esser B, Koch U, et al. Experimental verification of heat-flux mitigation by electromagnetic fields in partially -ionized-argon flows. Journal of Spacecraft and Rockets, 2009, 46(2): 274-283 doi: 10.2514/1.39256
    [14] Brio M, Wu CC. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 1988, 75(2): 400-422 doi: 10.1016/0021-9991(88)90120-9
    [15] Augustinus J, Harada S, Agarwal RK, et al. Numerical solutions of the eight-wave structure ideal MHD equations by modified Runge-Kutta scheme with TVD. AIAA Paper 1997-2398, 1997
    [16] Harada S, Augustinus J, Hoffmann K, et al. Development of a modified Runge-Kutta scheme with TVD limiters for the ideal 1-D MHD equations. AIAA Paper 1997-2090, 1997
    [17] Damevin HM, Hoffmann K. Numerical magnetogasdynamics simulations of hypersonic, chemically reacting flows. AIAA Paper 2001-2746, 2001
    [18] Zha G, Shen Y, Wang B. An improved low diffusion E-CUSP upwind scheme. Computers & Fluids, 2011, 48(1): 214-220
    [19] 田正雨. 高超声速流动的磁流体力学控制数值模拟研究. [博士论文]. 长沙: 国防科学技术大学, 2008

    (Tian Zhengyu. Numerical investigation for hypersonic control by magnetohydrodynamics method. [PhD Thesis]. Changsha: National University of Defense Technology, 2008 (in Chinese))
    [20] Bush WB. Magnetohydrodynamic-hypersonic flow past a blunt body. Journal of the Aerospace Sciences, 1958, 25(11): 685-690 doi: 10.2514/8.7845
    [21] Smith MC, Wu CS. Magnetohydrodynamic hypersonic viscous flow past a blunt body. AIAA Journal, 1964, 2(5): 963-965 doi: 10.2514/3.2465
    [22] Porter RW, Cambel AB. Hall effect in flight magnetogasdynamics. AIAA Journal, 1967, 5(12): 2208-2213 doi: 10.2514/3.4410
    [23] Ludford GSS, Murray JD. On the flow of a conducting fluid past a magnetized sphere. Journal of Fluid Mechanics, 1960, 7(4): 516-528 doi: 10.1017/S0022112060000268
    [24] Meyer RX. Magnetohydrodynamic-hypersonic flow in the quasi-Newtonian approximation. Reviews of Modern Physics, 1960, 32(4): 1004-1007 doi: 10.1103/RevModPhys.32.1004
    [25] Lykoudis PS. The Newtonian approximation in magnetic hypersonic stagnation-point flow. Journal of the Aerospace Sciences, 1961, 28(7): 541-546 doi: 10.2514/8.9073
    [26] Ericson WB, Maciulaitis A. Investigation of magnetohydrodynamic flight control. Journal of Spacecraft and Rockets, 1964, 1(3): 283-289 doi: 10.2514/3.27637
    [27] Hooks LE, Lewis RC. Simplified magnetoaerodynamic flow relations for axisymmetric blunt bodies. AIAA Journal, 1967, 5(4): 644-650 doi: 10.2514/3.4042
    [28] Kemp NH. On hypersonic stagnation-point flow with a magnetic field. Journal of the Aeronautical Sciences, 1958, 25(6): 405-407
    [29] Porter RW, Cambel AB. Magnetic coupling in flight magneto- aerodynamics. AIAA Journal, 1967, 5(4): 803-805 doi: 10.2514/3.4071
    [30] Olivier H. A theoretical model for the shock stand-off distance in frozen and equilibrium flows. Journal of Fluid Mechanics, 2000, 413: 345-353 doi: 10.1017/S0022112000008703
    [31] Lefevre A, Gildfind DE, Gollan RJ, et al. Expansion tube experiments of magnetohydrodynamic aerobraking for superorbital earth reentry. AIAA Journal, 2021, in press.
  • 加载中
图(6)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  100
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 录用日期:  2021-08-02
  • 网络出版日期:  2021-08-04
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回