EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主应变场的混凝土全表面开裂特征实时测量与分析

谷柳凝 宫文然 邵新星 陈捷 董志强 吴刚 何小元

谷柳凝, 宫文然, 邵新星, 陈捷, 董志强, 吴刚, 何小元. 基于主应变场的混凝土全表面开裂特征实时测量与分析. 力学学报, 2021, 53(7): 1962-1970 doi: 10.6052/0459-1879-21-107
引用本文: 谷柳凝, 宫文然, 邵新星, 陈捷, 董志强, 吴刚, 何小元. 基于主应变场的混凝土全表面开裂特征实时测量与分析. 力学学报, 2021, 53(7): 1962-1970 doi: 10.6052/0459-1879-21-107
Gu Liuning, Gong Wenran, Shao Xinxing, Chen Jie, Dong Zhiqiang, Wu Gang, He Xiaoyuan. Real time measurement and analysis of full surface cracking characteristics of concrete based on principal strain field. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1962-1970 doi: 10.6052/0459-1879-21-107
Citation: Gu Liuning, Gong Wenran, Shao Xinxing, Chen Jie, Dong Zhiqiang, Wu Gang, He Xiaoyuan. Real time measurement and analysis of full surface cracking characteristics of concrete based on principal strain field. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1962-1970 doi: 10.6052/0459-1879-21-107

基于主应变场的混凝土全表面开裂特征实时测量与分析

doi: 10.6052/0459-1879-21-107
基金项目: 国家自然科学基金(11902074, 11827801)和国家重点研发计划(2020YFC1511900)资助项目
详细信息
    作者简介:

    邵新星, 讲师, 主要研究方向: 光测实验力学. E-mail: xinxing.shao@seu.edu.cn

  • 中图分类号: TU43

REAL TIME MEASUREMENT AND ANALYSIS OF FULL SURFACE CRACKING CHARACTERISTICS OF CONCRETE BASED ON PRINCIPAL STRAIN FIELD

  • 摘要: 测量裂纹的扩展过程对于揭示混凝土结构的破坏机理和评价其力学性能十分重要. 本文提出了一种基于混凝土表面变形场的裂纹定位和宽度测量方法, 首先基于多相机数字图像相关方法得到混凝土试件表面的高分辨变形场, 发现开裂引起的位移梯度使裂纹附近的虚主应变场明显区别于未开裂处, 且主应变场在裂纹法线方向近似高斯分布. 借鉴在激光条纹中心线定位中广泛采用的Steger算法思想, 提出了基于主应变场的裂纹定位方法, 并将裂纹两侧位于法线上的面内位移向量做差沿裂纹法线方向上的投影为Ⅰ型裂纹宽度, 沿裂纹切线方向上的投影为Ⅱ型裂纹宽度, 最终得到了裂纹每一点的位置和宽度. 利用高精度平移台设计了模拟裂纹扩展的实验, 以验证Ⅰ型裂纹宽度的测量精度. 实验结果表明: 裂纹宽度的测量误差在0.010 ~ 0.017像素之间, 与理论预测相符; 测量误差的标准差在0.006 ~ 0.008像素之间, 测量结果比较稳定. 在同等分辨率下, 本文方法的测量精度优于基于图像的裂纹测量方法. 本文提出的方法可以全自动、实时地测量裂纹扩展, 为混凝土实验提供了一种可靠、精确的全场裂纹测量手段.

     

  • 图  1  裂纹扩展模拟实验

    Figure  1.  Simulation experiment of crack propagation

    图  2  基于主应变场的裂纹定位

    Figure  2.  Crack location based on principal strain field

    图  3  裂纹法线方向附近主应变场分布

    Figure  3.  Distribution of principal strain field around crack in normal direction

    图  4  子区大小、应变窗口对最大主应变值的影响

    Figure  4.  Influence of subset size and strain window on maximum principal strain

    图  5  裂纹附近位移场分布

    Figure  5.  Distribution of displacement field around crack

    图  6  裂纹示意图

    Figure  6.  Diagram of crack

    图  7  基于编码点的多相机外参统一

    Figure  7.  Multi camera external parameters unification based on coded points

    图  8  裂纹扩展前后像素图

    Figure  8.  Pixel image before and after crack propagation

    图  9  混凝土梁尺寸示意图及实验现场 (单位: mm)

    Figure  9.  Concrete beam size diagram and experimental setup (unit: mm)

    图  10  混凝土梁表面全场裂纹分布图

    Figure  10.  Crack distribution of the whole concrete beam surface

    图  11  裂纹随荷载增加扩展

    Figure  11.  Crack propagation with increasing load

    图  12  裂纹最大宽度变化图

    Figure  12.  Variation diagram of maximum crack width

    表  1  裂纹宽度测量结果(像素)

    Table  1.   Measurement results of crack (pixel)

    Actual widthMeasured widthAverage errorStandard deviation
    0.0370.0470.0100.007
    0.0560.0670.0110.006
    0.0740.0880.0140.006
    0.0930.1070.0140.006
    0.1110.1230.0120.006
    0.1300.1470.0170.007
    0.1480.1650.0170.006
    0.1670.1810.0140.006
    0.1850.1990.0140.008
    下载: 导出CSV
  • [1] 张登祥. 混凝土早期收缩开裂理论与控制技术及其在桥梁工程中的应用研究. [博士论文]. 长沙: 长沙理工大学, 2010

    (Zhang Dengxiang. The theory and control technology of shrinkage cracking at early age of concrete and application in bridge engineering. [PhD Thesis]. Changsha: Changsha University of Science & Technology, 2010 (in Chinese))
    [2] 李刚, 贺昱曜. 多方位结构元素路面裂缝图像边缘检测算法. 计算机工程与应用, 2010, 46(1): 224-226 (Li Gang, He Yuyao. Edge detection for road crack image with multidirection morphological structuring elements. Computer Engineering and Applications, 2010, 46(1): 224-226 (in Chinese) doi: 10.3778/j.issn.1002-8331.2010.01.067
    [3] Li QQ, Zou Q, Liu XL. Pavement crack classification via spatial distribution features. Eurasip Journal on Advances in Signal Processing, 2011, 2011: 649-675
    [4] Zhou J, Huang P, Chiang FP, et al. Wavelet-based pavement distress classification. Transportation Research Record: Journal of the Transportation Research Board, 2005, 1940: 89-98 doi: 10.1177/0361198105194000111
    [5] Ying J, Salari E. Beamlet transform-based technique for pavement crack detection and classification. Computer-Aided Civil and Infrasturcture Engineering, 2010, 25(8): 572-580 doi: 10.1111/j.1467-8667.2010.00674.x
    [6] Shu ZB, Guo YQ. Algorithm on contourlet domain in detection of road cracks for pavement images. Journal of Algorithms & Computational Technology, 2013, 7(1): 15-26
    [7] Zhang L, Yang F, Zhang D, et al. Road crack detection using deep convolutional neural network// Proceedings of the IEEE International Conference on Image Processing, Phoenix, AZ, USA, 2016: 1-5
    [8] Ni FT, Zhang J, Chen ZQ. Pixel level crack delineation in images with convolutional feature fusion. Structural Control and Health Monitoring, 2019, 26(1): e2286 doi: 10.1002/stc.2286
    [9] Zou Q, Zhang Z, Li QQ, et al. DeepCrack: Learning hierarchical convolutional features for crack detection. IEEE Transactions on Image Processing, 2018, 28(3): 1498-1512
    [10] Cha YJ, Choi W, Buyukozturk O. Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378 doi: 10.1111/mice.12263
    [11] Peters WH, Ranson WF. Digital imaging techniques in experimental stress-analysis. Optical Engineering, 1982, 21(3): 427-431
    [12] Yamaguchi I. A laser-speckle strain-gauge. Journal of Physics E-Scientific Instruments, 1981, 14(11): 1270-1273 doi: 10.1088/0022-3735/14/11/012
    [13] 邵新星, 陈振宁, 戴云彤等. 数字图像相关方法若干关键问题研究进展. 实验力学, 2017, 32(3): 305-325 (Shao Xinxing, Chen Zhening, Dai Yuntong, et al. Research progress of several key problems in digital image correlation. Journal of Experimental Mechanics, 2017, 32(3): 305-325 (in Chinese)
    [14] 徐小海, 苏勇, 蔡玉龙等. 数字图像相关法测量局域变形场中形函数和模板尺寸的影响. 力学学报, 2015, 47(5): 848-862 (Xu Xiaohai, Su Yong, Cai Yulong, et al. Influence of shape functions and template size in digital image correlation method for highly inhomogeneous deformations. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 848-862 (in Chinese) doi: 10.6052/0459-1879-15-119
    [15] Sutton MA, Ke X, Lessner SM, et al. Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation. Journal of Biomedical Materials Research, 2008, 84A(1): 178-190 doi: 10.1002/jbm.a.31268
    [16] Malesa M, Malowany K, Tomczak U, et al. Application of 3D digital image correlation in maintenance and process control in industry. Computers in Industry, 2013, 64(9): 1301-1315 doi: 10.1016/j.compind.2013.03.012
    [17] Genovese K, Chi YX, Pan B. Stereo-camera calibration for large-scale DIC measurements with active phase targets and planar mirrors. Optics Express, 2019, 27(6): 9040-9053 doi: 10.1364/OE.27.009040
    [18] 马少鹏, 赵永红, 金观昌等. 光测方法在岩石力学实验观测中的应用述评. 岩石力学与工程学报, 2005(10): 1794-1799 (Ma Shaopeng, Zhao Yonghong, Jin Guanchang, et al. Review on application of optical measurement methods experimental inspection of rock mechanics. Chinese Journal of Rock Mechanics and Engineering, 2005(10): 1794-1799 (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.10.027
    [19] 徐纪鹏, 董新龙, 付应乾等. 不同加载边界下混凝土巴西劈裂过程及强度的DIC实验分析. 力学学报, 2020, 52(3): 864-876 (Xu Jipeng, Dong Xinlong, Fu Yingqian, et al. Experimental analysis of process and tensile strength for concrete Brazilian splitting test with different loading boundaries by DIC method. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 864-876 (in Chinese) doi: 10.6052/0459-1879-19-303
    [20] Yuan F, Cheng L, Shao XX, et al. Full-field measurement and fracture and fatigue characterizations of asphalt concrete based on the SCB test and stereo-DIC. Engineering Fracture Mechanics, 2020, 235: 12
    [21] Steger C. An unbiased detector of curvilinear structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(2): 113-125 doi: 10.1109/34.659930
    [22] Chen W, Wang W, Li R, et al. Linear object extraction based on hydrodynamics,fractional differential and Steger algorithm. Journal of Image and Graphics, 2020, 25(7): 1436-1446
    [23] Wang W, Li R, Wang K, et al. Crack and Fracture central line delineation on steger and hydrodynamics with improved Fractional differentia. International Journal of Wavelets, Multiresolution and Information Processing, 2020, 18(5): 2050037
    [24] Song H, Zhang H, Kang Y, et al. Damage evolution study of sandstone by cyclic uniaxial test and digital image correlation. Tectonophysics, 2013, 608: 1343-1348 doi: 10.1016/j.tecto.2013.06.007
    [25] 吴庆华. 基于线结构光扫描的三维表面缺陷在线检测的理论与应用研究. [博士论文]. 武汉: 华中科技大学, 2013

    (Wu Qinghua. Study on theory and application of 3D surface defect on-line detecting based on line-stryctured laser scanning. [PhD Thesis] Wuhan: Huazhong University of Science and Technology (in Chinese))
    [26] Chen Z, Shao X, Xu X, et al. Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency. Applied Optics, 2018, 57(4): 884-893 doi: 10.1364/AO.57.000884
    [27] Malesa M, Kujawińska MG, Malowany K, et al. Application of multi-camera DIC system for measurements of industrial structures. Procedia Engineering, 2015, 114: 453-460 doi: 10.1016/j.proeng.2015.08.092
    [28] Orteu JJ, Bugarin F, Harvent J, et al. Multiple-camera instrumentation of a single point incremental forming process pilot for shape and 3D displacement measurements: methodology and results. Experimental Mechanics, 2011, 51(4): 625-639 doi: 10.1007/s11340-010-9436-1
    [29] Besl PJ, Mckay HD. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256 doi: 10.1109/34.121791
    [30] Dong S, Shao X, Kang X, et al. Extrinsic calibration of a non-overlapping camera network based on close-range photogrammetry. Applied Optics, 2016, 55(23): 6363 doi: 10.1364/AO.55.006363
    [31] 周继凯, 何旭, 王泽宇等. 海水海砂混凝土与潜在危害研究进展. 科学技术与工程, 2018, 18(24): 179-187 (Zhou Jikai, He Xu, Wang Zeyu, et al. Research progress on seawater and sea sand concrete and its potential hazards. Science Technology and Engineering, 2018, 18(24): 179-187 (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.24.026
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  44
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 录用日期:  2021-06-07
  • 网络出版日期:  2021-06-15
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回