EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半结晶聚合物损伤演化的实验表征与数值模拟

张毅 薛世峰 韩丽美 周博 刘建林 贾朋

张毅, 薛世峰, 韩丽美, 周博, 刘建林, 贾朋. 半结晶聚合物损伤演化的实验表征与数值模拟[J]. 力学学报, 2021, 53(6): 1671-1683. doi: 10.6052/0459-1879-21-101
引用本文: 张毅, 薛世峰, 韩丽美, 周博, 刘建林, 贾朋. 半结晶聚合物损伤演化的实验表征与数值模拟[J]. 力学学报, 2021, 53(6): 1671-1683. doi: 10.6052/0459-1879-21-101
Zhang Yi, Xue Shifeng, Han Limei, Zhou Bo, Liu Jianlin, Jia Peng. EXPERIMENTAL CHARACTERIZATION AND NUMERICAL SIMULATION OF DAMAGE EVOLUTION IN SEMI-CRYSTALLINE POLYMERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1671-1683. doi: 10.6052/0459-1879-21-101
Citation: Zhang Yi, Xue Shifeng, Han Limei, Zhou Bo, Liu Jianlin, Jia Peng. EXPERIMENTAL CHARACTERIZATION AND NUMERICAL SIMULATION OF DAMAGE EVOLUTION IN SEMI-CRYSTALLINE POLYMERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1671-1683. doi: 10.6052/0459-1879-21-101

半结晶聚合物损伤演化的实验表征与数值模拟

doi: 10.6052/0459-1879-21-101
基金项目: 1)国家自然科学基金资助项目(11802343)
详细信息
    作者简介:

    2)张毅, 副教授, 主要研究方向: 高分子聚合物损伤失效机理与表征方法研究. E-mail: zhangyi@upc.edu.cn

    通讯作者:

    张毅

  • 中图分类号: O344,TQ317.3

EXPERIMENTAL CHARACTERIZATION AND NUMERICAL SIMULATION OF DAMAGE EVOLUTION IN SEMI-CRYSTALLINE POLYMERS

  • 摘要: 损伤本构模型对研究材料的断裂失效行为有重要意义, 但聚合物材料损伤演化的定量表征实验研究相对匮乏. 通过4种高密度聚乙烯(high density polythylene, HDPE)缺口圆棒试样的单轴拉伸实验获得了各类试样的载荷-位移曲线和真应力-应变曲线, 采用实验和有限元模拟相结合的方法确定了HDPE材料不同应力状态下的本构关系, 并建立了缺口半径与应力三轴度之间的关系;采用两阶段实验法定量描述了4种HDPE试样单轴拉伸过程中的弹性模量变化, 并建立了基于弹性模量衰减的损伤演化方程, 结合中断实验和扫描电子显微镜分析了应力状态对HDPE材料微观结构演化的影响. 结果表明缺口半径越小, 应力三轴度越大, 损伤起始越早、演化越快; 微观表现为: 高应力三轴度促进孔洞的萌生和发展, 但抑制纤维状结构的产生;基于实验和有限元模拟获得的断裂应变、应力三轴度、损伤演化方程等信息提出了一种适用于聚合物的损伤模型参数确定方法, 最后将本文获得的本构关系和损伤模型用于HDPE平板的冲压成形模拟, 模拟结果与实验结果吻合良好.

     

  • [1] Brünig M, Chyra O, Albrecht D, et al. A ductile damage criterion at various stress triaxialities. International Journal of Plasticity, 2008, 24(10): 1731-1755
    [2] Hancock JW, Mackenzie AC. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids, 1976, 24(2-3): 147-160
    [3] Mackenzie AC, Hancock JW, Brown DK. On the influence of state of stress on ductile failure initiation in high strength steels. Engineering Fracture Mechanics, 1977, 9(1): 167-188
    [4] Alves M, Jones N. Influence of hydrostatic stress on failure of axisymmetric notched specimens. Journal of the Mechanics and Physics of Solids, 1999, 47(3): 643-667
    [5] Bonora N, Gentile D, Pirondi A, et al. Ductile damage evolution under triaxial state of stress: Theory and experiments. International Journal of Plasticity, 2005, 21(5): 981-1007
    [6] Brünig M, Chyra O, Albrecht D, et al. A ductile damage criterion at various stress triaxialities. International Journal of Plasticity, 2008, 24(10): 1731-1755
    [7] 祁爽, 蔡力勋, 包陈 等. 基于应力三轴度的材料颈缩和破断行为分析. 机械强度, 2015, 37(6): 1152-1158

    (Qi Shuang, Cai LiXun, Bao Chen, et al. Study on necking and fracture of ductile materials based on stress triaxiality. Journal of Mechanical Strength, 2015, 37(6): 1152-1158 (in Chinese))
    [8] Brünig M, Gerke S, Schmidt M. Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations. International Journal of Plasticity, 2018, 102: 70-82
    [9] 于思淼, 蔡力勋, 姚迪 等. 准静态条件下金属材料的临界断裂准则研究. 力学学报, 2018, 50(5): 1063-1080

    (Yu Simiao, Cai Lixun, Yao Di, et al. The critical strength criterion of metal materials under quasi-static loading. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1063-1080 (in Chinese))
    [10] Yu F, Hendry MT, Li SX. A stress triaxiality-dependent viscoplastic damage model to analyze ductile fracture under axisymmetric tensile loading. Engineering Fracture Mechanics, 2019, 211: 99-113
    [11] Wang B, Xiao X, Astakhov VP, et al. The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V. Engineering Fracture Mechanics, 2019, 219: 106627
    [12] Ganjiani M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle. European Journal of Mechanics - A/Solids, 2020, 84: 104048
    [13] Bonora N, Testa G, Ruggiero A, et al. Continuum damage mechanics modelling incorporating stress triaxiality effect on ductile damage initiation. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43: 1755-1768
    [14] Wang B, Xiao X, Astakhov VP, et al. A quantitative analysis of the transition of fracture mechanisms of Ti6Al4V over a wide range of stress triaxiality and strain rate. Engineering Fracture Mechanics, 2020: 107020
    [15] 黄学伟, 葛建舟, 赵军 等. Q690D高强钢基于连续损伤模型的断裂破坏预测分析. 工程力学, 2020, 37(2): 230-240

    (Huang Xuewei, Ge Jianzhou, Zhao Jun, et al. Fracture prediction analysis of Q690D high strength steel based on continuum damage model. Engineering Mechanics, 2020, 37(2): 230-240 (in Chinese))
    [16] Malcher L, Andrade Pires FM, César de Sá JMA. An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 2012, 30-31: 81-115
    [17] Cao TS, Gachet JM, Montmitonnet P, et al. A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality. Engineering Fracture Mechanics, 2014, 125: 80-96
    [18] Bonora N. A nonlinear CDM model for ductile failure. Engineering Fracture Mechanics, 1997, 58(1-2): 11-28
    [19] Bonora N, Gentile D, Pirondi A, et al. Ductile damage evolution under triaxial state of stress: Theory and experiments. International Journal of Plasticity, 2005, 21(5): 981-1007
    [20] Bonora N, Ruggiero A, Gentile D, et al. Practical applicability and limitations of the elastic modulus degradation technique for damage measurements in ductile metals. Strain, 2011, 47(3): 241-254
    [21] Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology, 1985, 107(1): 83-89
    [22] Chaboche JL. Anisotropic creep damage in the framework of continuum damage mechanics. Nuclear Engineering and Design, 1984, 79(3): 309-319
    [23] Mourad AHI, Elsayed HF, Barton DC, et al. Ultra high molecular weight polyethylene deformation and fracture behaviour as a function of high strain rate and triaxial state of stress. International Journal of Fracture, 2003, 120(3): 501-515
    [24] Challier M, Besson J, Laiarinandrasana L, et al. Damage and fracture of polyvinylidene fluoride (PVDF) at 20 $^ circ$C: Experiments and modelling. Engineering Fracture Mechanics, 2006, 73(1): 79-90
    [25] Fouad H. Experimental and numerical studies of the notch strengthening behaviour of semi-crystalline ultra-high molecular weight polyethylene. Materials & Design, 2010, 31(3): 1117-1129
    [26] Boisot G, Laiarinandrasana L, Besson J, et al. Experimental investigations and modeling of volume change induced by void growth in polyamide 11. International Journal of Solids and Structures, 2011, 48(19): 2642-2654
    [27] Cayzac HA, Sa? K, Laiarinandrasana L. Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model. International Journal of Plasticity, 2013, 51: 47-64
    [28] Ognedal AS, Clausen AH, Dahlen A, et al. Behavior of PVC and HDPE under highly triaxial stress states: An experimental and numerical study. Mechanics of Materials, 2014, 72: 94-108
    [29] Hachour K, Za?ri F, Na?t-Abdelaziz M, et al. Experiments and modeling of high-crystalline polyethylene yielding under different stress states. International Journal of Plasticity, 2014, 54: 1-18
    [30] Olufsen S, Clausen AH, Hopperstad OS. Influence of stress triaxiality and strain rate on stress-strain behaviour and dilation of mineral-filled PVC. Polymer Testing, 2019, 75: 350-357
    [31] Manaia JP, Pires FA, de Jesus AM, et al. Yield behaviour of high-density polyethylene: Experimental and numerical characterization. Engineering Failure Analysis, 2019, 97: 331-353
    [32] Andersen M, Hopperstad OS, Clausen AH. Volumetric strain measurement of polymeric materials subjected to uniaxial tension. Strain, 2019, 55(4): e12314
    [33] Manaia JP, Pires FA, de Jesus AM, et al. Mechanical response of three semi crystalline polymers under different stress states: Experimental investigation and modelling. Polymer Testing, 2020, 81: 106156
    [34] Han L, Zhang Y, Xue S, et al. Behavior of polyethylene under different triaxial stress states: An experimental and numerical study. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020: 1464420720970587
    [35] Kwon HJ, Jar PYB. On the application of FEM to deformation of high-density polyethylene. International Journal of Solids and Structures, 2008, 45(11-12): 3521-3543
    [36] Neale KW, Tu$ar{g}$cu P. Analysis of necking and neck propagation in polymeric materials. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 323-337
    [37] Tu$ar{g}$cu P, Neale KW. Analysis of plane-strain neck propagation in viscoplastic polymeric films. International Journal of Mechanical Sciences, 1987, 29(12): 793-805
    [38] Ogden RW. Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible Rubberlike solids. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1972, 328(1575): 567-583
    [39] Hutchinson JW, Neale KW. Neck propagation. Journal of the Mechanics and Physics of Solids, 1983, 31(5): 405-426
    [40] Ramberg W, Osgood WR. Description of stress-strain curves by three parameters. National Advisory Committee for Aeronautics, Tech. Note, 1943: 902
    [41] Pawlak A. Cavitation during tensile deformation of high-density polyethylene. Polymer, 2007, 48(5): 1397-1409
    [42] Bridgman PW. Studies in Large Plastic Flow and Fracture. New York: McGraw-Hill, 1952
  • 加载中
计量
  • 文章访问数:  541
  • HTML全文浏览量:  85
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-12
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回