EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波/湍流边界层干扰压力脉动特性数值研究

童福林 段俊亦 周桂宇 李新亮

童福林, 段俊亦, 周桂宇, 李新亮. 激波/湍流边界层干扰压力脉动特性数值研究. 力学学报, 2021, 53(7): 1829-1841 doi: 10.6052/0459-1879-21-094
引用本文: 童福林, 段俊亦, 周桂宇, 李新亮. 激波/湍流边界层干扰压力脉动特性数值研究. 力学学报, 2021, 53(7): 1829-1841 doi: 10.6052/0459-1879-21-094
Tong Fulin, Duan Junyi, Zhou Guiyu, Li Xinliang. Statistical characteristics of pressure fluctuation in shock wave and turbulent boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1829-1841 doi: 10.6052/0459-1879-21-094
Citation: Tong Fulin, Duan Junyi, Zhou Guiyu, Li Xinliang. Statistical characteristics of pressure fluctuation in shock wave and turbulent boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1829-1841 doi: 10.6052/0459-1879-21-094

激波/湍流边界层干扰压力脉动特性数值研究

doi: 10.6052/0459-1879-21-094
基金项目: 国家自然科学基金(11972356, 91852203)和国家重点研发计划(2019YFA0405300)资助项目
详细信息
    作者简介:

    童福林, 副研究员, 主要研究方向: 可压缩湍流高精度数值研究. E-mail: 515363491@qq.com

    周桂宇, 高级工程师, 主要研究方向:复杂流动机理. E-mail: zhouguiyu29@163.com

  • 中图分类号: V211.3,O241.3

STATISTICAL CHARACTERISTICS OF PRESSURE FLUCTUATION IN SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTION

  • 摘要: 激波/湍流边界层干扰问题广泛存在于高速飞行器内外流动中, 激波干扰会导致局部流场出现强压力脉动, 严重影响飞行器气动性能和飞行安全. 为了考察干扰区内脉动压力的统计特性, 对来流马赫数2.25, 激波角33.2°的入射激波与平板湍流边界层相互作用问题进行了直接数值模拟研究. 在对计算结果进行细致验证的基础上, 分析比较了干扰区外层和物面脉动压力的典型统计特征, 如脉动强度、功率谱密度、两点相关和时空关联特性等, 着重探讨了两者的差异及其原因. 研究发现, 激波干扰对外层和物面压力脉动的影响差异显著. 分离区内脉动以低频特征为主, 随后再附区外层压力脉动的峰值频率往高频区偏移, 而物面压力脉动的低频能量仍相对较高. 两点相关结果表明, 外层和物面脉动压力的展向关联性均明显强于其流向, 前者积分尺度过激波急剧增长随后缓慢衰减, 而后者积分尺度整体上呈现逐步增大趋势. 此外, 时空关联分析结果指出, 脉动压力关联系数等值线仍符合经典的椭圆形分布, 干扰区下游压力脉动对流速度将减小, 外层对流速度仍明显高于物面.

     

  • 图  1  计算模型

    Figure  1.  Computational model

    图  2  计算网格示意图

    Figure  2.  Sketch of the computational grid

    图  3  入口处层流剖面

    Figure  3.  Laminar profile at inlet

    图  4  平均流向速度剖面

    Figure  4.  Mean streamwise velocity profile at xref

    图  5  湍流脉动强度

    Figure  5.  Turbulence intensities at xref

    图  6  物面压力功率谱

    Figure  6.  Power spectral density for wall pressure at xref

    图  7  物面压力分布

    Figure  7.  Distribution of wall pressure

    图  8  上游湍流边界层压力脉动强度分布

    Figure  8.  Distribution of pressure fluctuation intensity for the incoming TBL

    图  9  干扰区压力脉动强度云图

    Figure  9.  Contour of pressure fluctuation intensity in the interaction region

    图  10  物面压力脉动强度分布

    Figure  10.  Distribution of wall pressure fluctuation intensity

    图  11  站位1压力脉动预乘功率谱

    Figure  11.  Pre-multiplied power spectral density for pressure fluctuations at station 1

    图  12  干扰区内不同站位压力脉动预乘功率谱

    Figure  12.  Pre-multiplied power spectral density for pressure fluctuations at various streamwise locations

    图  13  站位1压力脉动两点相关系数

    Figure  13.  Two-point correlation coefficient of pressure fluctuations at station 1

    图  14  站位2两点相关系数(虚线: 站位1)

    Figure  14.  Two-point correlation coefficient of pressure fluctuations at station 2 (dashed lines: station 1)

    图  15  站位3 ~ 5两点相关系数(上:物面; 下: y/δ = 0.8; 虚线: 站位1)

    Figure  15.  Two-point correlation coefficient at station 3 ~ 5 (top: wall; down: y/δ = 0.8; dashed lines: station 1)

    图  16  压力脉动积分尺度分布

    Figure  16.  Distribution of integral scale for pressure fluctuations

    图  17  站位1压力脉动时空关联系数

    Figure  17.  Space-time correlation coefficient for pressure fluctuations at station 1

    图  18  站位2压力脉动时空关联系数(虚线: 站位1)

    Figure  18.  Space-time correlation coefficient for pressure fluctuations at station 2 (dashed lines: station 1)

    图  19  站位3 ~ 5压力脉动时空关联系数(上: 物面; 下: y/δ = 0.8; 虚线: 站位1)

    Figure  19.  Space-time correlation coefficient at station 3 ~ 5 (top: wall; down: y/δ = 0.8; dashed lines: station 1)

    图  20  干扰区内各站位物面压力脉动对流速度

    Figure  20.  Convection velocity for wall pressure fluctuations at various stations in the interaction region

    图  21  干扰区内各站位外层压力脉动对流速度

    Figure  21.  Convection velocity for pressure fluctuations in the outer layer

    表  1  参考点xref 处湍流边界层参数

    Table  1.   Turbulent boundary layer parameters at xref

    caseMReδReδ*ReθCf × 103
    present2.25510871184035672.34
    Ref.[18]2.25514681221637002.50
    下载: 导出CSV
  • [1] Dolling DS. Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA Journal, 2001, 39(8): 1517-1530 doi: 10.2514/2.1476
    [2] Gaitonde DV. Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 2015, 72: 80-99 doi: 10.1016/j.paerosci.2014.09.002
    [3] Settles GS, Fitzpatrick TJ. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow. AIAA Journal, 1979, 17(6): 579-585 doi: 10.2514/3.61180
    [4] Ringuette MJ, Wu M, Martin MP. Low Reynolds number effects in a Mach 3 shock and turbulent boundary layer interaction. AIAA Journal, 2008, 46(7): 1884-1887
    [5] Erengil ME, Dolling DS. Unsteady wave structure near separation in a Mach 5 compression ramp interaction. AIAA Journal, 1991, 29(5): 728-735 doi: 10.2514/3.10647
    [6] Dolling DS, Brusniak L. Separation shock motion in fin, cylinder, and compression ramp induced turbulent interactions. AIAA Journal, 1989, 27(6): 734-742
    [7] Selig MS, Andreopoulos J, Muck KC, et al. Turbulence structure in a shock wave/turbulent boundary layer interaction. AIAA Journal, 1989, 27(6): 862-869
    [8] Piponniau S, Collin E, Dupont P, et al. Reconstruction of velocity fields from wall pressure measurements in a shock wave / turbulent boundary layer interaction. International Journal of Heat and Fluids Flow, 2012, 35: 176-186 doi: 10.1016/j.ijheatfluidflow.2012.02.006
    [9] Pirozzoli S, Grasso F. Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M=2.25. Physics of Fluids, 2006, 18: 065113 doi: 10.1063/1.2216989
    [10] Bernardini M, Pirozzoli S, Grasso F. The wall pressure signature of transonic shock/boundary layer interaction. Journal of Fluid Mechanics, 2011, 671: 288-312 doi: 10.1017/S0022112010005677
    [11] Volpiani PS, Bernardini M, Larsson J. Effect of a nonadiabatic wall on supersonic shock/boundary-layer interactions. Physical Review Fluids, 2018, 3: 083401 doi: 10.1103/PhysRevFluids.3.083401
    [12] Tong FL, Yu CP, Tang ZG, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner: Turning angle effects. Computers and Fluids, 2017, 149: 56-69 doi: 10.1016/j.compfluid.2017.03.009
    [13] Tong FL, Tang ZG, Yu CP, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls. Journal of Turbulence, 2017, 18(6): 569-588 doi: 10.1080/14685248.2017.1311017
    [14] 童福林, 孙东, 袁先旭等. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟. 航空学报, 2020, 41(3): 123328 (Tong Fulin, Sun Dong, Yuan Xianxu, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction in a supersonic expansion corner. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123328 (in Chinese)
    [15] 童福林, 周桂宇, 孙东等. 膨胀效应对激波/湍流边界层干扰的影响. 航空学报, 2020, 41(9): 123731 (Tong Fulin, Zhou Guiyu, Sun Dong, et al. Expansion effect on shock wave and turbulent boundary layer interactions. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123731 (in Chinese)
    [16] Duan L, Choudhari MM, Zhang C. Pressure fluctuations induced by a hypersonic turbulent boundary layer. Journal of Fluid Mechanics, 2016, 804: 578-607 doi: 10.1017/jfm.2016.548
    [17] Dupont P, Haddad C, Debieve JF. Space and time organization in a shock-induced separated boundary layer. Journal of Fluid Mechanics, 2006, 559: 255-277 doi: 10.1017/S0022112006000267
    [18] Fang J, Zheltovodov AA, Yao Y F, et al. On the turbulence amplification in shock-wave/turbulent boundary layer interaction. Journal of Fluid Mechanics, 2020, 897: A32 doi: 10.1017/jfm.2020.350
    [19] Tong FL, Li XL, Duan YH, et al. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp. Physics of Fluids, 2017, 29: 125101 doi: 10.1063/1.4996762
    [20] Li XL, Fu DX, Ma YW, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp. Science China Physics, Mechanics and Astronomy, 2010, 53(9): 1651-1658 doi: 10.1007/s11433-010-4034-x
    [21] Tong FL, Li XL, Yuan XX, et al. Incident shock wave and supersonic turbulent boundary layer interactions. Computers and Fluids, 2020, 198: 104385 doi: 10.1016/j.compfluid.2019.104385
    [22] Martin MP, Taylor EM, Wu M. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. Journal of Computational Physics, 2006, 220: 270-289 doi: 10.1016/j.jcp.2006.05.009
    [23] Pirozzoli S, Bernardini M, Grasso F. Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. Journal of Fluid Mechanics, 2009, 657: 361-393
    [24] Wu X, Moin P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. Journal of Fluid Mechanics, 2009, 630: 5-41 doi: 10.1017/S0022112009006624
    [25] Spalart PR. Direct numerical simulation of a turbulent boundary layer up to Re θ=1410. Journal of Fluid Mechanics, 1988, 187: 61-98 doi: 10.1017/S0022112088000345
    [26] Gravante SP, Naguib AM, Wark CE, et al. Characterization of the pressure fluctuations under a fully developed turbulent boundary layer. AIAA Journal, 1998, 36(10): 1808-1816 doi: 10.2514/2.296
    [27] Farabee T, Casarella MJ. Spectral features of wall pressure fluctuations beneath turbulent boundary layers. Physics of Fluids, 1991, 3(10): 2410-2420 doi: 10.1063/1.858179
    [28] Bernardini M, Pirozzoli S. Wall pressure fluctuations beneath supersonic turbulent boundary layers. Physics of Fluids, 2011, 23: 085102 doi: 10.1063/1.3622773
    [29] Clemens NT, Narayanaswamy V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions. Annual Review of Fluid Mechanics, 2014, 46: 469-492 doi: 10.1146/annurev-fluid-010313-141346
    [30] Choi H, Moin P. On the space-time characteristics of wall pressure fluctuations. Physics of Fluids A: Fluid Dynamics, 1990, 2: 1450 doi: 10.1063/1.857593
    [31] Kim J. On the structure of pressure fluctuations in simulated turbulent channel flow. Journal of Fluid Mechanics, 1989, 205: 421-451 doi: 10.1017/S0022112089002090
    [32] Na Y, Moin P. The structure of wall-pressure fluctuations in turbulent boundary layer with adverse pressure gradient and separation. Journal of Fluid Mechanics, 1998, 377: 347-373 doi: 10.1017/S0022112098003218
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  31
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 录用日期:  2021-05-18
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回