EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场力及膜曲率对磁敏感薄膜-基底界面 黏附性能的影响与调控

韩明杰 彭志龙 姚寅 张博 陈少华

韩明杰, 彭志龙, 姚寅, 张博, 陈少华. 磁场力及膜曲率对磁敏感薄膜-基底界面 黏附性能的影响与调控[J]. 力学学报, 2021, 53(6): 1609-1621. doi: 10.6052/0459-1879-21-091
引用本文: 韩明杰, 彭志龙, 姚寅, 张博, 陈少华. 磁场力及膜曲率对磁敏感薄膜-基底界面 黏附性能的影响与调控[J]. 力学学报, 2021, 53(6): 1609-1621. doi: 10.6052/0459-1879-21-091
Han Mingjie, Peng Zhilong, Yao Yin, Zhang Bo, Chen Shaohua. INFLUENCE AND REGULATION OF INTERFACIAL ADHESION PROPERTIES OF A MAGNETIC SENSITIVE FILM/SUBSTRATE BY MAGNETIC FORCE AND FILM'S CURVATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1609-1621. doi: 10.6052/0459-1879-21-091
Citation: Han Mingjie, Peng Zhilong, Yao Yin, Zhang Bo, Chen Shaohua. INFLUENCE AND REGULATION OF INTERFACIAL ADHESION PROPERTIES OF A MAGNETIC SENSITIVE FILM/SUBSTRATE BY MAGNETIC FORCE AND FILM'S CURVATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1609-1621. doi: 10.6052/0459-1879-21-091

磁场力及膜曲率对磁敏感薄膜-基底界面 黏附性能的影响与调控

doi: 10.6052/0459-1879-21-091
基金项目: 1)国家自然科学基金(12022211);国家自然科学基金(11872114);国家自然科学基金(12032004);北京市自然科学基金(3212011)
详细信息
    作者简介:

    3)陈少华, 教授, 主要研究方向: 仿生材料与结构力学、表面/界面力学、微纳米力学. E-mail: shchen@bit.edu.cn
    2)彭志龙, 教授, 主要研究方向: 仿生材料力学、表面/界面力学. E-mail: pengzhilong@bit.edu.cn;

    通讯作者:

    彭志龙

    陈少华

  • 中图分类号: O341

INFLUENCE AND REGULATION OF INTERFACIAL ADHESION PROPERTIES OF A MAGNETIC SENSITIVE FILM/SUBSTRATE BY MAGNETIC FORCE AND FILM'S CURVATURE

  • 摘要: 界面黏附和脱黏的可调控在攀爬装置、黏附开关、机械抓手等方面具有重要的应用需求. 针对磁敏感薄膜-基底界面, 开展了薄膜初始曲率及外加磁场对界面黏附性能影响机制的研究. 首先实验制备了具有初始曲率的磁敏感薄膜, 分别开展了具有初始曲率的磁敏感薄膜-基底界面撕脱实验及理论研究, 研究了薄膜初始曲率、弯曲刚度和外加磁场强度对界面黏附性能的影响规律. 实验和理论结果一致表明: 具有初始曲率的磁敏感薄膜-基底界面黏附力随薄膜初始曲率的增大而减小, 而外加磁场能够有效提高界面黏附力;相比于初始零曲率薄膜-基底界面稳态撕脱力与薄膜弯曲刚度无关, 薄膜弯曲刚度减弱了具有初始曲率薄膜-基底界面的稳态撕脱力. 进一步从能量角度分析了界面等效黏附性能, 揭示了薄膜弯曲能、磁场势能、界面黏附能的相互竞争机制. 最后, 基于本文的实验及理论结果, 提出了一种磁场和薄膜初始曲率协同调控的简易机械抓手, 可连续实现物体的拾取、搬运和释放功能. 本文结果不仅有助于理解多场调控的界面可逆黏附机制, 对界面黏附可控的功能器件设计亦提供了一种新方法.

     

  • 冯家兴, 胡海豹, 卢丙举 等. 超疏水沟槽表面通气减阻实验研究. 力学学报, 2020, 52(1): 24-30

    (Feng Jiaxing, Hu Haibao, Lu Bingju, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24-30 (in Chinese))
    杨松默, 王刚, 曹延林 等. 水下多级微结构液气界面的稳定性和可恢复性研究. 力学学报, 2020, 52(2): 451-461

    (Yang Songmo, Wang Gang, Cao Yanlin, et al. Stability and recoverability of liquid-gas interfaces on submerged hierarchically structured surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 451-461 (in Chinese))
    Autumn K, Sitti M, Liang YCA, et al. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19): 12252-12256
    陈少华, 苏爱嘉. 生物黏附与仿生黏附力学的进展. 力学与实践, 2007, 29(4): 9-17

    (Chen Shaohua, Soh Aijia. Development of mechanics of bio-adhesion and biomimetic adhesion. Mechanics in Engineering, 2007, 29(4): 9-17 (in Chinese))
    Autumn K, Liang YA, Hsieh ST, et al. Adhesive force of a single gecko foot-hair. Nature, 2000, 405(6787): 681-685
    Gorb S, Scherge M. Biological microtribology: Anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proceedings of the Royal Society B-Biological Sciences, 2000, 267(1449): 1239-1244
    Federle W, Riehle M, Curtis ASG, et al. An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants. Integrative and Comparative Biology, 2002, 42(6): 1100-1106
    Spolenak R, Gorb S, Gao HJ, et al. Effects of contact shape on the scaling of biological attachments. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 2005, 461(2054): 305-319
    Tian Y, Pesika N, Zeng HB, et al. Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51): 19320-19325
    Pesika NS, Tian Y, Zhao BX, et al. Peel-zone model of tape peeling based on the gecko adhesive system. Journal of Adhesion, 2007, 83(4): 383-401
    Peng ZL, Chen SH, Soh AK. Peeling behavior of a bio-inspired nano-film on a substrate. International Journal of Solids and Structures, 2010, 47(14-15): 1952-1960
    Sauer RA. A finite element seta model for studying gecko adhesion. ASME International Mechanical Engineering Congress and Exposition, 2009, 12: 149-150
    Bosia F, Colella S, Mattoli V, et al. Hierarchical multiple peeling simulations. Rsc Advances, 2014, 4(48): 25447-25452
    Huber G, Mantz H, Spolenak R, et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(45): 16293-16296
    Federle W, Brainerd EL, McMahon TA, et al. Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(11): 6215-6220
    Chen SH, Gao HJ. Bio-inspired mechanics of reversible adhesion: Orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. Journal of the Mechanics and Physics of Solids, 2007, 55(5): 1001-1015
    Chen SH, Yan C, Soh AK. Adhesive behavior of two-dimensional power-law graded materials. International Journal of Solids and Structures, 2009, 46(18-19): 3398-3404
    Gao HJ, Wang X, Yao HM, et al. Mechanics of hierarchical adhesion structures of geckos. Mechanics of Materials, 2005, 37(2-3): 275-285
    Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10603-10606
    Varenberg M, Pugno NM, Gorb SN. Spatulate structures in biological fibrillar adhesion. Soft Matter, 2010, 6(14): 3269-3272
    Peng ZL, Wang C, Yang YZ, et al. Effect of relative humidity on the peeling behavior of a thin film on a rigid substrate. Physical Review E, 2016, 94(3): 032801
    Peng ZL, Chen SH. Effects of surface roughness and film thickness on the adhesion of a bioinspired nanofilm. Physical Review E, 2011, 83(5): 051915
    Peng ZL, Chen SH. Effect of pre-tension on the peeling behavior of a bio-inspired nano-film and a hierarchical adhesive structure. Applied Physics Letters, 2012, 101(16): 163702
    Geim AK, Dubonos SV, Grigorieva IV, et al. Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2003, 2(7): 461-463
    Glassmaker NJ, Jagota A, Hui CY. Adhesion enhancement in a biomimetic fibrillar interface. Acta Biomaterialia, 2005, 1(4): 367-375
    Glassmaker NJ, Jagota A, Hui CY, et al. Design of biomimetic fibrillar interfaces: 1.Making contact. Journal of the Royal Society Interface, 2004, 1(1): 23-33
    Peressadko A, Gorb SN. When less is more: Experimental evidence for tenacity enhancement by division of contact area. Journal of Adhesion, 2004, 80(4): 247-261
    del Campo A, Greiner C, Arzt E. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir, 2007, 23(20): 10235-10243
    Greiner C, Arzt E, del Campo A. Hierarchical gecko-like adhesives. Advanced Materials, 2009, 21(4): 479-482
    Lee JH, Fearing RS, Komvopoulos K. Directional adhesion of gecko-inspired angled microfiber arrays. Applied Physics Letters, 2008, 93(19): 191910
    Jeong HE, Lee JK, Kwak MK, et al. Effect of leaning angle of gecko-inspired slanted polymer nanohairs on dry adhesion. Applied Physics Letters, 2010, 96(4): 043704
    Murphy MP, Kim S, Sitti M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Applied Materials & Interfaces, 2009, 1(4): 849-855
    Li XJ, Peng ZL, Yang YZ, et al. Tunable adhesion of a bio-inspired micropillar arrayed surface actuated by a magnetic field. Journal of Applied Mechanics-Transactions of the ASME, 2019, 86(1): 011007
    Parness A, Soto D, Esparza N, et al. A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. Journal of the Royal Society Interface, 2009, 6(41): 1223-1232
    Tao DS, Gao X, Lu HY, et al. Controllable anisotropic dry adhesion in vacuum: Gecko inspired wedged surface fabricated with ultraprecision diamond cutting. Advanced Functional Materials, 2017, 27(22): 1606576
    Tramsen HT, Gorb SN, Zhang H, et al. Inversion of friction anisotropy in a bioinspired asymmetrically structured surface. Journal of the Royal Society Interface, 2018, 15(138): 20170629
    Jiang H, Hawkes EW, Fuller C, et al. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Science Robotics, 2017, 2(7): eaan4545
    Reddy S, Arzt E, del Campo A. Bioinspired surfaces with switchable adhesion. Advanced Materials, 2007, 19(22): 3833-3837
    Xue YG, Zhang YH, Feng X, et al. A theoretical model of reversible adhesion in shape memory surface relief structures and its application in transfer printing. Journal of the Mechanics and Physics of Solids, 2014, 77: 27-42
    Cao CY, Sun XY, Fang YH, et al. Theoretical model and design of electroadhesive pad with interdigitated electrodes. Materials & Design, 2016, 89: 485-491
    Krahn J, Menon C. Electro-dry-adhesion. Langmuir, 2012, 28(12): 5438-5443
    Drotlef DM, Blumler P, Papadopoulos P, et al. Magnetically actuated micropatterns for switchable wettability. Acs Applied Materials & Interfaces, 2014, 6(11): 8702-8707
    Gillies AG, Kwak J, Fearing RS. Controllable particle adhesion with a magnetically actuated synthetic gecko adhesive. Advanced Functional Materials, 2013, 23(26): 3256-3261
    Boesel LF, Greiner C, Arzt E, et al. Gecko-inspired surfaces: A path to strong and reversible dry adhesives. Advanced Materials, 22(19): 2125-2137
    Drechsler P, Federle W. Biomechanics of smooth adhesive pads in insects: Influence of tarsal secretion on attachment performance. Journal of Comparative Physiology A-Neuroethology Sensory Neural And Behavioral Physiology, 2006, 192: 1213-1222
    Lees AD, Hardie J. The organs of adhesion in the aphid megoura viciae. Journal of Experimental Biology, 1988, 136: 209-228
    Carlson A, Wang SD, Elvikis P, et al. Active, programmable elastomeric surfaces with tunable adhesion for deterministic assembly by transfer printing. Advanced Functional Materials, 2012, 22: 4476-4484
    Dening K, Heepe L, Afferrante L, et al. Adhesion control by inflation: Implications from biology to artificial attachment device. Applied Physics A, 2014, 116: 567-573
    Li LZ, Liu ZY, Zhou M, et al. Flexible adhesion control by modulating backing stiffness based on jamming of granular materials. Smart Materials & Structures, 2019, 28: 115023
    Linghu CH, Wang CJ, Cen N, et al. Rapidly tunable and highly reversible bio-inspired dry adhesion for transfer printing in air and a vacuum. Soft Matter, 2019, 15: 30-37
    Xie T, Xiao XC. Self-peeling reversible dry adhesive system. Chemistry of Materials, 2008, 20: 2866-2868
    Spies GJ. The peeling test on redux-bonded joints: A theoretical analysis of the test devised by aero research limited. Aircraft Engineering and Aerospace Technology, 1953, 25(3): 64-70
    李炳奇, 张振宇, 李斌 等. 基于内聚力模型的高速水流聚脲基涂层剥离破坏模型研究. 力学学报, 2020, 52(5): 1538-1546

    (Li Bingqi, Zhang Zhenyu, Li Bin, et al. Study on debonding failure model of polyurea-based coating with high velocity water flow based on cohesive zone model. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1538-1546 (in Chinese))
    Chai Z, Liu M, Chen L, et al. Controllable directional deformation of micro-pillars actuated by a magnetic field. Soft Matter, 2019, 15: 8879-8885
    Peng ZL, Chen SH. Effect of bending stiffness on the peeling behavior of an elastic thin film on a rigid substrate. Physical Review E, 2015, 91(4): 042401
    Kendall K. Thin-film peeling-elastic term. Journal of Physics D-Applied Physics, 1975, 8(13): 1449-1452
    Needleman A. An analysis of decohesion along an imperfect interface. International Journal of Fracture, 1990, 42(1): 21-40
    Kamiyama H, Takaki H. A possible distribution of ion density in the iono-exosphere with a dipole magnetic field. Journal of Geomagnetism and Geoelectricity, 1966, 18: 1-11
    王明勇, 郎志坚, 李国军. 方形磁体的空间磁场分布. 磁性材料及器件, 2001, 32: 17-20

    (Wang Mingyong, Lang Zhijian, Li Guojun. The spacial magnetic field distribution of square magnet. Journal of Magnetic Materials and Devies, 2001, 32: 17-20 (in Chinese))
    Said MM, Yunas J, Pawinanto RE, et al. PDMS based electromagnetic actuator membrane with embedded magnetic particles in polymer composite. Sensors and Actuators A-Physical, 2016, 245: 85-96
  • 加载中
计量
  • 文章访问数:  123
  • HTML全文浏览量:  6
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 录用日期:  2021-06-18

目录

    /

    返回文章
    返回

    重要通知

    近日,本刊多次接到来电,称有不法网站冒充《力学学报》杂志官网,并向投稿人收取高额审稿费用。在此,我们郑重申明:

    1.《力学学报》官方网站(https://lxxb.cstam.org.cn/)是本刊唯一的投稿渠道,《力学学报》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

    2.《力学学报》在稿件录用前不以任何形式向作者收取包括审稿费、中介费等在内的任何费用!请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62536271。

    感谢大家多年来对《力学学报》的支持与厚爱,欢迎继续关注我们!