EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑颗粒转矩的接触网络诱发各向异性分析

王怡舒 沈超敏 刘斯宏 陈静涛

王怡舒, 沈超敏, 刘斯宏, 陈静涛. 考虑颗粒转矩的接触网络诱发各向异性分析[J]. 力学学报, 2021, 53(6): 1634-1646. doi: 10.6052/0459-1879-21-090
引用本文: 王怡舒, 沈超敏, 刘斯宏, 陈静涛. 考虑颗粒转矩的接触网络诱发各向异性分析[J]. 力学学报, 2021, 53(6): 1634-1646. doi: 10.6052/0459-1879-21-090
Wang Yishu, Shen Chaomin, Liu Sihong, Chen Jingtao. SHEAR-INDUCED ANISOTROPY ANALYSIS OF CONTACT NETWORKS INCORPORATING PARTICLE ROLLING RESISTANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1634-1646. doi: 10.6052/0459-1879-21-090
Citation: Wang Yishu, Shen Chaomin, Liu Sihong, Chen Jingtao. SHEAR-INDUCED ANISOTROPY ANALYSIS OF CONTACT NETWORKS INCORPORATING PARTICLE ROLLING RESISTANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1634-1646. doi: 10.6052/0459-1879-21-090

考虑颗粒转矩的接触网络诱发各向异性分析

doi: 10.6052/0459-1879-21-090
基金项目: 1)国家自然科学基金雅砻江联合基金(U1765205);国家自然科学基金(51979091);国家自然科学基金(52009036)
详细信息
    作者简介:

    2)刘斯宏, 教授, 主要研究方向: 土石坝工程、粒状体力学和地基处理等. E-mail: sihongliu@hhu.edu.cn

    通讯作者:

    刘斯宏

  • 中图分类号: TU43,TV641

SHEAR-INDUCED ANISOTROPY ANALYSIS OF CONTACT NETWORKS INCORPORATING PARTICLE ROLLING RESISTANCE

  • 摘要: 颗粒材料的宏观力学行为与接触网络的组构各向异性密切相关, 根据接触点的滑动与否、转动与否和强弱力情况, 可以将颗粒间的接触系统分为不同的子接触网络. 一般而言, 不同的子接触网络在颗粒体系中的传力机制不同, 对宏观力学响应的贡献也有不同. 采用离散单元法(discrete element method, DEM)模拟了不同抗转动系数$\mu_r$下颗粒材料三轴剪切试验, 分析了剪切过程中不同子接触网络的组构张量的演变规律, 并探究了颗粒抗转动效应对子接触网络各向异性指标演变规律的影响. 研究发现: 剪切过程中转动、非转动接触的组构张量变化不是独立的, 受到颗粒间滑动与否的影响; 非滑动、强接触网络是颗粒间的主要传力结构, 非滑动接触网络的接触法向和法向接触力各向异性均随$\mu_r$的增大而增大, 其对宏观应力的贡献程度随$\mu_r$的增大而减小;强接触网络的接触法向各向异性随$\mu_r$的增大而增大, 但法向接触力各向异性随$\mu_r$的增大无明显变化, 强接触网络对宏观应力的贡献程度在不同$\mu_r$情况下均相同.

     

  • [1] 孙其诚, 程晓辉, 季顺迎 等. 岩土类颗粒物质宏-细观力学研究进展. 力学进展, 2011, 41(3): 351-371

    (Sun Qicheng, Cheng Xiaohui, Ji Shunying, et al. Advances in the micro-macro mechanics of granular soil materials. Advances in Mechanics, 2011, 41(3): 351-371 (in Chinese))
    [2] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47-65
    [3] Guo N, Zhao J. The signature of shear-induced anisotropy in granular media. Computers and Geotechnics, 2013, 47: 1-15
    [4] 钱劲松, 陈康为, 张磊. 粒料固有各向异性的离散元模拟与细观分析. 力学学报, 2018, 50(5): 1041-1050

    (Qian Jinsong, Chen Kangwei, Zhang Lei. Simulation and micro-mechanics analysis of inherent anisotropy of granular by distinct element method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1041-1050 (in Chinese))
    [5] Zhao S, Evans TM, Zhou X. Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. International Journal of Solids and Structures, 2018, 150: 268-281
    [6] 刘嘉英, 周伟, 马刚 等. 颗粒材料三维应力路径下的接触组构特性. 力学学报, 2019, 51(1): 26-35

    (Liu Jiaying, Zhou Wei, Ma Gang, et al. Contact fabric characteristics of granular materials under three dimensional stress paths. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35 (in Chinese))
    [7] 蒋明镜. 现代土力学研究的新视野-宏微观土力学. 岩土工程学报, 2019, 41(2): 195-254

    (Jiang Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254 (in Chinese))
    [8] 刘一鸣, 杨春和, 霍永胜 等. 考虑转动阻抗的粗粒土离散元模拟. 岩土力学, 2013, 34(S1): 486-493

    (Liu Yiming, Yang Chunhe, Huo Yongsheng, et al. Discrete element modeling of behaviors of coarse grained soils considering rolling resistance. Rock and Soil Mechanics, 2013, 34(S1): 486-493 (in Chinese))
    [9] Liu Y, Liu H, Mao H. The influence of rolling resistance on the stress-dilatancy and fabric anisotropy of granular materials. Granular Matter, 2018, 20(1): 1-16
    [10] 刘嘉英, 马刚, 周伟 等. 抗转动特性对颗粒材料分散性失稳的影响研究. 岩土力学, 2017, 38(5): 1472-1480

    (Liu Jiaying, Ma Gang, Zhou Wei, et al. Impact of rotation resistance on diffuse failure of granular materials. Rock and Soil Mechanics, 2017, 38(5): 1472-1480 (in Chinese))
    [11] 邹宇雄, 马刚, 李易奥 等. 抗转动对颗粒材料组构特性的影响研究. 岩土力学, 2020, 41(8): 2829-2838

    (Zou Yuxiong, Ma Gang, Li Yiao, et al. Impact of rotation resistance on fabric of granular materials. Rock and Soil Mechanics, 2020, 41(8): 2829-2838 (in Chinese))
    [12] Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM. Journal of Engineering Mechanics, 1998, 124(3): 285-292
    [13] Jiang M, Shen Z, Wang J. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances. Computers and Geotechnics, 2015, 65: 147-163
    [14] Radjai F, Wolf DE, Jean M, et al. Bimodal character of stress transmission in granular packings. Physical Review Letters, 1998, 80(1): 61-64
    [15] Estrada N, Taboada A, Radjai F. Shear strength and force transmission in granular media with rolling resistance. Physical Review E, 2008, 78(2): 021301
    [16] Tordesillas A. Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philosophical Magazine, 2007, 87(32): 4987-5016
    [17] Antony SJ, Kruyt NP. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media. Physical Review E, 2009, 79(3): 031308
    [18] Ben-Nun O, Einav I, Tordesillas A. Force attractor in confined comminution of granular materials. Physical Review Letters, 2010, 104(10): 108001
    [19] Alonso-Marroquin F, Luding S, Herrmann HJ, et al. Role of anisotropy in the elastoplastic response of a polygonal packing. Physical Review E, 2005, 71(5): 051304
    [20] Oda M. Fabric tensor for discontinuous geological materials. Soils and Foundations, 1982, 22(4): 96-108.
    [21] Rothenburg L, Bathurst RJ. Analytical study of induced anisotropy in idealized granular materials. Géotechnique, 1989, 39(4): 601-614
    [22] Ouadfel H, Rothenburg L. Stress-force-fabric' relationship for assemblies of ellipsoids. Mechanics of Materials, 2001, 33(4): 201-221
    [23] Chantawarangul K. Numerical simulations of three-dimensional granular assemblies. [PhD Thesis]. University of Waterloo, 1993: 219
    [24] Zhao J, Guo N. The interplay between anisotropy and strain localisation in granular soils: A multiscale insight. Géotechnique, 2015, 65(8): 642-656
    [25] Sufian A, Russell AR, Whittle AJ. Anisotropy of contact networks in granular media and its influence on mobilised internal friction. Géotechnique, 2017, 67(12): 1067-1080
    [26] Itasca Consulting Group Inc., Particle Flow Code in Three Dimensions (PFC3D), Version 5.0, Minneapolis, MN. 2015
    [27] Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM. Journal of Engineering Mechanics, 1998, 124(3): 285-292
    [28] Ai J, Chen JF, Rotter JM, et al. Assessment of rolling resistance models in discrete element simulations. Powder Technology, 2011, 206(3): 269-282
    [29] 土工试验规程SL237-1999. 北京: 中国水利水电出版社, 1999

    (Specification of soil test SL 237-1999. Beijing: China Water Resources and Hydropower Press, 1999 (in Chinese))
    [30] 朱晟, 邓石德, 宁志远 等. 基于分形理论的堆石料级配设计方法. 岩土工程学报, 2017, 39(6): 1151-1155

    (Zhu Sheng, Deng Shide, Ning Zhiyuan, et al. Gradation design method for rockfill materials based on fractal theory. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155 (in Chinese))
    [31] Guo N. Multiscale characterization of the shear behavior of granular media. [PhD Thesis]. Hong Kong: Hong Kong University of Science and Technology, 2014
    [32] Yan WM, Dong J. Effect of particle grading on the response of an idealized granular assemblage. International Journal of Geomechanics, 2011, 11(4): 276-285
    [33] Shen C, Liu S, Wang Y. Microscopic interpretation of one-dimensional compressibility of granular materials. Computers and Geotechnics, 2017, 91(11): 161-168
    [34] Minh NH, Cheng YP. A DEM investigation of the effect of particle-size distribution on one-dimensional compression. Géotechnique, 2013, 63(1): 44-53
    [35] Hanley K, Huang X, O'Sullivan, et al. Energy dissipation in soil samples during drained triaxial shearing. Géotechnique, 2018, 68(5), 421-433
    [36] Kenichi K. Distribution of directional data and fabric tensors. International Journal of Engineering Science, 1984, 22(2): 149-164
    [37] Christoffersen J, Mehrabadi MM, Nemat-Nasser S. A micromechanical description of granular material behavior. ASME Journal of Applied Mechanics, 1981, 48, 339-344
    [38] Li X, Yu HS. Applicability of stress-force-fabric relationship for non-proportional loading. Computers & Structures, 2011, 89(11-12): 1094-1102
  • 加载中
计量
  • 文章访问数:  771
  • HTML全文浏览量:  167
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回