EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航行体出水破冰的多场耦合效应与相似律

岳军政 吴先前 黄晨光

岳军政, 吴先前, 黄晨光. 航行体出水破冰的多场耦合效应与相似律. 力学学报, 2021, 53(7): 1930-1939 doi: 10.6052/0459-1879-21-082
引用本文: 岳军政, 吴先前, 黄晨光. 航行体出水破冰的多场耦合效应与相似律. 力学学报, 2021, 53(7): 1930-1939 doi: 10.6052/0459-1879-21-082
Yue Junzheng, Wu Xianqian, Huang Chenguang. Multi-field coupling effect and similarity law of floating ice break by vehicle launched underwater. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1930-1939 doi: 10.6052/0459-1879-21-082
Citation: Yue Junzheng, Wu Xianqian, Huang Chenguang. Multi-field coupling effect and similarity law of floating ice break by vehicle launched underwater. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1930-1939 doi: 10.6052/0459-1879-21-082

航行体出水破冰的多场耦合效应与相似律

doi: 10.6052/0459-1879-21-082
基金项目: 国家自然科学基金资助项目(11772347, 12002349)
详细信息
    作者简介:

    吴先前, 副研究员, 主要研究方向: 爆炸与冲击动力学. E-mail: wuxianqian@imech.ac.cn

  • 中图分类号: O341

MULTI-FIELD COUPLING EFFECT AND SIMILARITY LAW OF FLOATING ICE BREAK BY VEHICLE LAUNCHED UNDERWATER

  • 摘要: 航行体出水破冰中的耦合效应及载荷特征, 是出水冰结构安全性评估的重要依据. 针对航行体出水破冰问题, 通过量纲分析, 获得了影响航行体动载荷及头部应力的主控参数和相似律. 基于LS-DYNA流固耦合计算方法, 得到了航行体在不同冲击速度、冰层厚度、冰层大小条件下的载荷特性. 计算结果表明, 航行体速度越大, 不同冰层对其过载和头部应力的影响差别越大, 这主要是因为航行体速度越大, 通过水介质对不同冰层的前期破坏程度不同. 对于无限大冰层, 当其厚度大于3倍航行体直径时, 航行体穿冰后期呈现稳定侵彻现象, 航行体的过载和头部应力只与航行体的速度和冰的动力学性能相关; 而对于薄冰, 航行体速度越大, 其头部应力反而越小, 这是因为航行体初速度越大, 其通过水的运动对冰的前期冲击破坏越严重, 冰层易开裂上鼓, 所以造成航行体头部应力较小. 对于径向尺寸为6倍航行体直径的碎冰, 当其厚度大于5倍航行体直径时, 碎冰对航行体运动特性的影响和无限大冰层几乎相同; 而当其厚度小于3倍的航行体直径时, 只有在初速度较低时, 碎冰的尺寸效应才可以忽略. 此外, 对比碎冰和无限冰层对航行体运动的影响可以看出, 越厚的冰受前期水的冲击破坏越小, 碎冰和无限冰层的影响规律基本一致; 而较薄的冰在前期水的冲击下破坏严重, 碎冰和无限冰层对航行体运动的影响都较小; 只有中等厚度的冰, 在较高冲击速度下碎冰和无限冰层才表现出径向尺寸效应相关的破坏程度, 如无量纲厚度为3的两种冰在航行体较高初速度40 m/s的条件下前期破坏差别较大, 导致后期对航行体运动特性的影响具有显著差异.

     

  • 图  1  航行体出水破冰示意图

    Figure  1.  Schematic diagram of ice break by vehicle launched underwater

    图  2  两种工况数值计算结果对比(上角标*表示各参数对应的无量纲量)

    Figure  2.  Comparison of the numerical results for the two cases (superscript * denotes the dimensionless quantity)

    图  3  计算模型及局部网格划分(不同工况内冰层尺寸不同)

    Figure  3.  Full view of simulation components and part of meshed model (ice sheet size is different in different cases)

    图  4  不同网格计算的航行体速度和加速度变化

    Figure  4.  Simulated vehicle speed history and acceleration history by different grid sizes

    图  5  不同冰层时初速度40 m/s的航行体的速度和加速度变化

    Figure  5.  Speed and acceleration history for 40 m/s vehicle impacting with different ice targets

    图  6  不同冰层时初速度40 m/s的航行体的头部应力历史

    Figure  6.  Stress history at the 40 m/s vehicle head with different ice targets

    图  7  不同冰层时初速度30 m/s的航行体的速度和加速度变化

    Figure  7.  Speed and acceleration history for 30 m/s vehicle impacting with different ice targets

    图  8  不同冰层时初速度30 m/s的航行体的头部应力历史

    Figure  8.  Stress history at the 30 m/s vehicle head with different ice targets

    图  9  不同冰层时初速度20 m/s的航行体的速度和加速度变化

    Figure  9.  Speed and acceleration history for 20 m/s vehicle impacting with different ice targets

    图  10  不同冰层时初速度20 m/s的航行体的头部应力历史

    Figure  10.  Stress history at the 20 m/s vehicle head with different ice targets

    图  11  初速度30 m/s的航行体撞击3 cm厚冰层不同时刻的应力分布

    Figure  11.  Stress distribution of vehicle with initial velocity 30 m/s and 3 cm thick ice target at different time

    图  12  不同冰层时航行体最大过载与最大头部应力随速度的变化

    Figure  12.  Variation of maximum overload and head stress of vehicle with speed for different ice targets

    表  1  冰计算模型及参数[24]

    Table  1.   Ice details[24]

    PropertiesValues
    dimensions: infinite ice sheet
    dimensions: broken ice
    24 cm × 24 cm × hi
    6 cm × 6 cm × hi
    density897 kg/m3
    Young’s modulus9.31 GPa
    maximum pressure9.2 MPa
    minimum pressure−0.92 MPa
    element type*SECTION_SOLID (brick)
    typical element size0.5 mm
    material properties*MAT_ELASTIC, *MAT_ADD_EROSION
    *hi is the height of the ice target, and the infinite ice sheet model uses the non-reflecting boundary.
    下载: 导出CSV

    表  2  航行体计算模型及参数

    Table  2.   Vehicle details

    PropertiesValues
    dimensions1 cm diameter, 10 cm length
    and spherical head
    initial vehicle-ice separation, s5 cm
    density7800 kg/m3
    Young’s modulus207 GPa
    yield strength2.1 GPa
    element type*SECTION_SOLID (brick)
    typical element size0.83 mm
    material properties*MAT_PLASTIC_KINEMATIC
    下载: 导出CSV

    表  3  水计算模型及参数[25]

    Table  3.   Water box details[25]

    PropertiesValues
    dimensions25 cm × 25 cm × 17 cm
    density1000 kg/m3
    element type*SECTION_SOLID (brick)
    typical element size0.5 mm
    material properties*MAT_NULL, *EOS_GRUNEISEN
    下载: 导出CSV

    表  4  空气计算模型及参数[25]

    Table  4.   Air box details[25]

    PropertiesValues
    dimensions25 cm × 25 cm × ha
    density1.25 kg/m3
    element type*SECTION_SOLID (brick)
    typical element size0.5 mm, 0.75 mm
    material properties*MAT_NULL, *EOS_LINEAR_POLYNOMIAL
    *ha is the height of the air domain, and is bigger than the height of the ice target hi.
    下载: 导出CSV

    表  5  水的Gruneisen状态方程参数

    Table  5.   Gruneisen EOS parameters for water

    C /(m·s−1)S1S2S3γa
    15201.92000.280
    下载: 导出CSV

    表  6  空气线性多项式状态方程参数

    Table  6.   Polynomial EOS parameters for air

    C0C1C2C3C4C5C6E/(J·m−3)
    00000.40.402.53×105
    下载: 导出CSV

    表  7  不同工况计算条件

    Table  7.   Calculation conditions for different cases

    ParametersValue
    initial velocity of vehicle, v0/(m·s−1) 20, 30, 40
    ice thickness, hi/cm 1, 3, 5
    ice size/(cm×cm) infinite, 6 × 6
    下载: 导出CSV
  • [1] Arakawa M, Maeno N. Mechanical strength of polycrystalline ice under uniaxial compression. Cold Regions Science and Technology, 1997, 26: 215-229 doi: 10.1016/S0165-232X(97)00018-9
    [2] Schulson EM, Iliescu D, Fortt A. Characterization of ice for return-to flight of the space shuttle: Part i-hard ice. NASA Contractor Report, 2005: 213643
    [3] Dutta PK, Cole DM, Schulson EM, et al. A fracture study of ice under high strain rate loading. Internatioanl Journal of Offshore and Polar Engineering, 2004, 14(3): 182-188
    [4] Kim H, Keune JN. Compressive strength of ice at impact strain rates. Journal of Materials Science, 2007, 42: 2802-2006 doi: 10.1007/s10853-006-1376-x
    [5] Stewart ST, Ahrens TJ. Shock properties of H2O ice. Journal of Geophysical Research, 2005, Planets 110: E03005
    [6] Wu X, Prakash V. Dynamic strength of distill water and lake water ice at high strain rates. International Journal of Impact Engineering, 2015, 76: 155-165 doi: 10.1016/j.ijimpeng.2014.09.013
    [7] Wu X, Prakash V. Dynamic compressive behavior of ice at cryogenic temperatures. Cold Regions Science and Technology, 2015, 118: 1-13 doi: 10.1016/j.coldregions.2015.06.004
    [8] Jones SJ. High strain-rate compression tests on ice. Journal of Physical Chemistry B, 1997, 101(32): 6099-6101 doi: 10.1021/jp963162j
    [9] 季顺迎, 岳前进, 姚征. 渤海海冰动力学中的黏弹塑性本构模型. 水科学进展, 2002, 13(5): 599-604 (Ji Shunying, Yue Qianjin, Yao Zheng. Viscous-elastic-plastic constitutive model for sea ice dynamics in the Bohai Sea. Advances in Water Science, 2002, 13(5): 599-604 (in Chinese) doi: 10.3321/j.issn:1001-6791.2002.05.012
    [10] Gao Y, Hu Z, Ringsberg JW, et al. An elastic-plastic ice material model for ship-iceberg collision simulations. Ocean Engineering, 2015, 102: 27-39 doi: 10.1016/j.oceaneng.2015.04.047
    [11] Schulson EM, Duval P. Creep and Fracture of Ice. New York: Cambridge University Press, 2009
    [12] Shazly M, Prakash V, Lerch BA. High strain-rate behavior of ice under uniaxial compression. International Journal of Solids and Structures, 2009, 46(6): 1499-1515 doi: 10.1016/j.ijsolstr.2008.11.020
    [13] Carney KS, Benson DJ, DuBois P, et al. A phenomenological high strain rate model with failure for ice. International Journal of Solids and Structures, 2006(43): 7820-7839
    [14] 徐莹, 胡志强, 陈刚等. 船冰相互作用研究方法综述. 船舶力学, 2019, 23(1): 110-124 (Xu Ying, Hu Zhiqiang, Chen Gang, et al. Overview of the investigating methods for ship-ice interaction analysis. Journal of Ship Mechanics, 2019, 23(1): 110-124 (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.01.012
    [15] Jones SJ, Gagnon RE, Derradji A, et al. Compressive strength of iceberg ice. Canadian Journal of Physics, 2003, 81(1-2): 191-200
    [16] 马健钧. 海冰弯曲破坏的数值模拟方法研究[硕士论文]. 天津: 天津大学, 2013

    (Ma Jianjun. Methodology research on the numerical simulation of the bending failure of sea ice[Master Thesis]. Tianjin: Tianjin University, 2013(in Chinese))
    [17] Xu Y, Hu ZQ, Ringsberg JW, et al. Nonlinear viscoelastic-plastic material modelling for the behaviour of ice in ice-structure interactions. Ocean Engineering, 2019, 173: 284-297 doi: 10.1016/j.oceaneng.2018.12.050
    [18] Sodhi DS. Crushing failure during ice-structure interaction. Engineering Fracture Mechanics, 2001, 68(17): 1889-1921
    [19] 郭春雨, 李夏炎, 王帅等. 冰区航行船舶碎冰阻力预报数值模拟方法. 哈尔滨工程大学学报, 2016, 37(2): 145-156 (Guo Chunyu, Li Xiayan, Wang Shuai, et al. A numerical simulation method for resistance prediction of ship in pack ice. Journal of Harbin Engineering University, 2016, 37(2): 145-156
    [20] 吴炜, 黄焱. 考虑海冰漂移的船舶冰载荷分布模型试验. 船舶力学, 2021, 25(2): 166-174 (Wu Wei, Huang Yan. Model tests on ice load distribution of an icebreaker under drifting ice. Journal of Ship Mechanics, 2021, 25(2): 166-174 (in Chinese)
    [21] 程文霞. 基于近场动力学的冰下爆炸破冰数值模拟研究. [博士论文]. 哈尔滨: 哈尔滨工程大学, 2019

    (Cheng Wenxia. Research on numerical simulation of ice breaking by under ice explosion based on peridynamics. [PhD Thesis]. Harbin: Harbin Engineering University, 2019(in Chinese))
    [22] 王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展. 力学进展, 2018, 48: 201805 (Wang Yiwei, Huang Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process. Advances in Mechanics, 2018, 48: 201805 (in Chinese)
    [23] Livermore Software Technology Corporation. LS-DYNA User’s Manual (960v), Volume III (Structured Format). 2001
    [24] 张忠和, 梁向前, 王树理. 水下爆破破冰机理的数值分析研究. 爆破, 2015, 32(3): 150-155 (Zhang Zhonghe, Liang Xiangqian, Wang Shuli. Numerical simulation of ice breaking mechanism of underwater blasting. Blasting, 2015, 32(3): 150-155 (in Chinese) doi: 10.3963/j.issn.1001-487X.2015.03.027
    [25] Gagnon RE, Wang J. Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel. Cold Regions Science and Technology, 2012, 81: 26-35 doi: 10.1016/j.coldregions.2012.04.006
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  41
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 录用日期:  2021-05-10
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回