EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种预测颗粒增强复合材料界面力学性能的新方法

郭晓龙 姚寅 陈少华

郭晓龙, 姚寅, 陈少华. 一种预测颗粒增强复合材料界面力学性能的新方法[J]. 力学学报, 2021, 53(5): 1334-1344. doi: 10.6052/0459-1879-21-076
引用本文: 郭晓龙, 姚寅, 陈少华. 一种预测颗粒增强复合材料界面力学性能的新方法[J]. 力学学报, 2021, 53(5): 1334-1344. doi: 10.6052/0459-1879-21-076
Guo Xiaolong, Yao Yin, Chen Shaohua. A NEW METHOD FOR PREDICTING THE INTERFACIAL MECHANICAL PROPERTY IN PARTICLE-REINFORCED COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1334-1344. doi: 10.6052/0459-1879-21-076
Citation: Guo Xiaolong, Yao Yin, Chen Shaohua. A NEW METHOD FOR PREDICTING THE INTERFACIAL MECHANICAL PROPERTY IN PARTICLE-REINFORCED COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1334-1344. doi: 10.6052/0459-1879-21-076

一种预测颗粒增强复合材料界面力学性能的新方法

doi: 10.6052/0459-1879-21-076
基金项目: 1)国家自然科学基金资助项目(11872114);国家自然科学基金资助项目(11772333);国家自然科学基金资助项目(12032004)
详细信息
    作者简介:

    3)陈少华, 教授, 主要研究方向: 微纳米力学、复合材料力学、仿生结构材料力学、表界面力学. E-mail:shchen@bit.edu.cn
    2)姚寅, 助理教授, 主要研究方向: 微纳米力学、复合材料力学. E-mail:yaoyin@bit.edu.cn;

    通讯作者:

    姚寅

    陈少华

  • 中图分类号: O33,O34

A NEW METHOD FOR PREDICTING THE INTERFACIAL MECHANICAL PROPERTY IN PARTICLE-REINFORCED COMPOSITES

  • 摘要: 界面在颗粒增强复合材料中起到传递载荷的关键作用, 界面性能对复合材料整体力学行为产生重要影响. 然而由于复合材料内部结构较为复杂, 颗粒与基体间的界面强度和界面断裂韧性难以确定, 尤其是法向与切向界面强度的分别预测缺乏有效方法. 本文以氧化锆颗粒增强聚二甲基硅氧烷(PDMS)复合材料为研究对象, 提出一种预测颗粒增强复合材料界面力学性能的新方法. 首先, 实验获得纯PDMS基体材料及单颗粒填充PDMS试样的单轴拉伸应力$\!-\!$应变曲线, 标定出PDMS基体材料的单轴拉伸超弹性本构关系; 其次, 建立与单颗粒填充试样一致的有限元模型, 选择特定的黏结区模型描述界面力学行为, 通过样品不同阶段拉伸力学响应的实验与数值结果对比, 分别给出颗粒与基体界面的法向强度、切向强度及界面断裂韧性; 进一步应用标定的界面力学参数, 开展不同尺寸及不同数目颗粒填充试样的实验与数值结果比较, 验证界面性能预测结果的合理性. 本文提出的界面力学性能预测方法简便、易操作、精度高, 对定量预测颗粒增强复合材料的力学性能具有一定帮助, 亦对定量预测纤维增强复合材料的界面性能具有一定参考意义.

     

  • [1] 沈观林, 胡更开. 复合材料力学. 北京: 清华大学出版社, 2006

    (Shen Guanlin, Hu Genkai. Mechanics of Composites. Beijing: Tsinghua University Press, 2006 (in Chinese))
    [2] 曹明月, 张启, 吴建国 等. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究. 力学学报, 2020,52(4):1095-1105

    (Cao Mingyue, Zhang Qi, Wu Jianguo, et al. Study on nonlinear constitutive relationship and fracture behavior of stitched C/SiC composites. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4):1095-1105 (in Chinese))
    [3] 白坤朝, 詹世革, 张攀峰 等. 力学十年: 现状与展望. 力学进展, 2019,49(1):201911

    (Bai Kunchao, Zhan Shige, Zhang Panfeng, et al. Mechanics 2006-2015: Situation and prospect. Advances in Mechanics, 2019,49(1):201911 (in Chinese))
    [4] Fu SY, Feng XQ, Lauke B, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites Part B, 2008,39:933-961
    [5] Scudino S, Liu G, Prashanth KG, et al. Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Materialia, 2009,57(6):2029-2039
    [6] Chen JH, Liu J, Yao Y, et al. Effect of microstructural damage on the mechanical properties of silica nanoparticle-reinforced silicone rubber composites. Engineering Fracture Mechanics, 2020,235:107195
    [7] Hashin Z. Thermoelastic properties of particulate composites with imperfect interface. Journal of the Mechanics and Physics of Solids, 1990,39(6):745-762
    [8] Qu S, Siegmund T, Huang Y, et al. A study of particle size effect and interface fracture in aluminum alloy composite via an extended conventional theory of mechanism-based strain gradient plasticity. Composites Science and Technology, 2005,65(7-8):1244-1253
    [9] Chen JK, Wang GT, Yu ZZ, et al. Critical particle size for interfacial debonding in polymer/nanoparticle composites. Composites Science and Technology, 2010,70:861-872
    [10] Toulemonde PA, Diani J, Gilormini P, et al. On the account of a cohesive interface for modeling the behavior until break of highly filled elastomers. Mechanics of Materials, 2016,93:124-133
    [11] Weng L, Fan TX, Wen M, et al. Three-dimensional multi-particle FE model and effects of interface damage, particle size and morphology on tensile behavior of particle reinforced composites. Composite Structures, 2019,209:590-605
    [12] Ban HX, Yao Y, Chen SH, et al. A new constitutive model of micro-particle reinforced metal matrix composites with damage effects. International Journal of Mechanical Sciences, 2019,152:524-534
    [13] Liu B, Huang WM, Huang L, et al. Size-dependent compression deformation behaviors of high particle content B4C/Al composites. Materials Science and Engineering A, 2012,534:530-535
    [14] Yue YL, Zhang H, Zhang Z, et al. Tensile properties of fumed silica filled polydimethylsiloxane networks. Composites Part A, 2013,54:20-27
    [15] 张立群. 橡胶纳米复合材料基础与应用. 北京: 化学工业出版社, 2018

    (Zhang Liqun. Rubber Nanocomposites: Basics and Applications. Beijing: Chemical Industry Press, 2018 (in Chinese))
    [16] Jong L. Improved mechanical properties of silica reinforced rubber with natural polymer. Polymer Testing, 2019,79:106009
    [17] 张娟, 康国政, 饶威. 金属玻璃基复合材料的变形行为及本构关系研究综述. 力学学报, 2020,52(2):318-332

    (Zhang Juan, Kang Guozheng, Rao Wei. Review on the deformation behavior and constitutive equations of metallic glass matrix composites. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):318-332 (in Chinese))
    [18] 杨正茂, 刘晖, 杨俊杰. 含热冲击预损伤的陶瓷基复合材料损伤本构模型. 力学学报, 2019,51(6):1797-1809

    (Yang Zhengmao, Liu Hui, Yang Junjie. Damage constitutive model for thermal shocked-ceramic matrix composite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1797-1809 (in Chinese))
    [19] Ciprari D, Jacob K, Tannenbaum R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules, 2006,39(19):6565-6573
    [20] Quaresimin M, Schulte K, Zappalorto M, et al. Toughening mechanisms in polymer nanocomposites: from experiments to modelling. Composites Science and Technology, 2016,123:187-204
    [21] Alimardani M, Razzaghi-Kashani M, Ghoreishy MHR. Prediction of mechanical and fracture properties of rubber composites by microstructural modeling of polymer-filler interfacial effects. Materials & Design, 2017,115:348-354
    [22] Meddeb AB, Tighe T, Ounaies Z, et al. Extreme enhancement of the nonlinear elastic response of elastomer nanoparticulate composites via interphases. Composites Part B, 2019,156:166-173
    [23] Alimardani M, Razzaghi-Kashani M, Koch T. Crack growth resistance in rubber composites with controlled Interface bonding and interphase content. Journal of Polymer Research, 2019,26(47):1-9
    [24] Ilseng A, Skallerud BH, Clausen AH. An experimental and numerical study on the volume change of particle-filled elastomers in various loading modes. Mechanics of Materials, 2017,54:20-27
    [25] 王健. 界面改善对A1$_{2}$O $_{(3P)}$/钢基复合材料力学性能的影响. [硕士论文]. 昆明: 昆明理工大学, 2015

    (Wang Jian. The effect of interface improvement on the mechanical property of A1$_{2}$O $_{(3P)}$/steel composites. [Master Thesis]. Kunming: Kunming University of Science and Technology, 2015 (in Chinese))
    [26] Chen C, Xie Y, Yin S, et al. Evaluation of the interfacial bonding between particles and substrate in angular cold spray. Materials Letters, 2016,173:76-79
    [27] Dariusz MJ, Chmielewski M, Wojciechowski T. The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites. Composites Part A, 2015,76:124-130
    [28] Tsui CP, Tang CY, Fan JP, et al. Prediction for initiation of debonding damage and tensile stress-strain relation of glass-bead-filled modified polyphenylene oxide. International Journal of Mechanical Sciences, 2004,46(11):1659-1674
    [29] Meng Q, Wang Z. Prediction of interfacial strength and failure mechanisms in particle-reinforced metal-matrix composites based on a micromechanical model. Engineering Fracture Mechanics, 2015,142:170-183
    [30] 杨序纲. 复合材料界面. 北京: 化学工业出版社, 2010

    (Yang Xugang. Composite Interfaces. Beijing: Chemical Industry Press, 2010 (in Chinese))
    [31] Zhao YH, Weng GJ. The effect of debonding angle on the reduction of effective moduli of particle and fiber-reinforced composites. ASME Journal of Applied Mechanics, 2002,69:292-302
    [32] Ban HX, Peng ZL, Fang DN, et al. A modified conventional theory of mechanism-based strain gradient plasticity considering both size and damage effects. International Journal of Solids and Structures, 2020,202:384-397
    [33] Huang ZP, Wang J. Micromechanics of nanocomposites with interface energy effect//Li, SF, Gao XL ed.Handbook of Micromechanics and Nanomechanics. Singapore: Pan Stanford Publishing Pte. Ltd., 2013: 303-348
    [34] Yao Y, Peng ZL, Li JJ, et al. A new theory of nanocomposites with incoherent interface effect based on interface energy density. ASME Journal of Applied Mechanics, 2020,87:021008
    [35] Chen SH, Wang TC. Size effects in the particle-reinforced metal-matrix composites. Acta Mechanica, 2002,157(1):113-127
    [36] Wei YG. Particulate size effect in the particle reinforced metal matrix composites. Acta Mechanica Sinica, 2001,17(1):45-58
    [37] Yin HB, et al. Quantitative prediction of the whole peeling process of an elastic film on a rigid substrate. ASME Journal of Applied Mechanics, 2018,85:091004
    [38] Williams JG, Hadavinia H. Analytical solutions for cohesive zone models. Journal of the Mechanics and Physics of Solid, 2002,50(4):809-825
  • 加载中
计量
  • 文章访问数:  420
  • HTML全文浏览量:  51
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-22
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回