EI、Scopus 收录
中文核心期刊
张珍, 叶舒然, 岳杰顺, 王一伟, 黄晨光. 基于组合神经网络的雷诺平均湍流模型 多次修正方法[J]. 力学学报, 2021, 53(6): 1532-1542. DOI: 10.6052/0459-1879-21-073
引用本文: 张珍, 叶舒然, 岳杰顺, 王一伟, 黄晨光. 基于组合神经网络的雷诺平均湍流模型 多次修正方法[J]. 力学学报, 2021, 53(6): 1532-1542. DOI: 10.6052/0459-1879-21-073
Zhang Zhen, Ye Shuran, Yue Jieshun, Wang Yiwei, Huang Chenguang. A COMBINED NEURAL NETWORK AND MULTIPLE MODIFICATION STRATEGY FOR REYNOLDS-AVERAGED NAVIER-STOKES TURBULENCE MODELING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1532-1542. DOI: 10.6052/0459-1879-21-073
Citation: Zhang Zhen, Ye Shuran, Yue Jieshun, Wang Yiwei, Huang Chenguang. A COMBINED NEURAL NETWORK AND MULTIPLE MODIFICATION STRATEGY FOR REYNOLDS-AVERAGED NAVIER-STOKES TURBULENCE MODELING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1532-1542. DOI: 10.6052/0459-1879-21-073

基于组合神经网络的雷诺平均湍流模型 多次修正方法

A COMBINED NEURAL NETWORK AND MULTIPLE MODIFICATION STRATEGY FOR REYNOLDS-AVERAGED NAVIER-STOKES TURBULENCE MODELING

  • 摘要: 求解雷诺平均(Reynolds-averaged Navier-Stokes, RANS)方程依然是工程应用中有效且实用的方法, 但对雷诺应力建模的不确定性会导致该方法的预测精度具有很大差异. 随着人工智能的发展, 湍流闭合模型结合机器学习元素的数据驱动方法被认为是提高RANS模型预测性能的有效手段, 然而这种数据驱动方法的稳定性和预测精度仍有待进一步提高. 本文通过构建一个全连接神经网络对RANS方程中的涡黏系数进行预测以实现雷诺应力的隐式求解,该神经网络记作涡黏系数神经网络(eddy viscosity neural network, EVNN). 此外, 也使用张量基神经网络(tensor basis neural network, TBNN)预测未封闭量与解析量之间的高阶涡黏关系, 并利用基张量保证伽利略不变性. 最后, 采用多次修正的策略实现修正模型对流场预测的精度闭环. 上述方法使用大涡模拟(large eddy simulation, LES)方法产生的高保真数据, 以及RANS模拟获得的基线数据对由EVNN和TBNN组合的神经网络进行训练, 然后用训练好的模型预测新的RANS模拟的流场. 通过与高保真LES结果进行对比, 结果表明, 相比于原始RANS模型, 修正模型对后验速度场、下壁面平均压力系数和摩擦力系数的预测精度均有较大提升. 可以发现对雷诺应力线性部分的隐式处理可以增强数值求解的稳定性, 对雷诺应力非线性部分的修正可以提升模型对流场各向异性特征预测的性能, 并且多次修正后的模型表现出更高的预测精度. 因此, 该算法在数据驱动湍流建模和工程应用中具有很大的应用潜力.

     

    Abstract: Solving the Reynolds-averaged Navier-Stokes (RANS) equation remains an effective and practical approach in engineering applications, but the uncertainty of Reynolds stress modeling will lead to discrepancies in the prediction accuracy of this approach. With the development of artificial intelligence, the data-driven method of turbulence model combined with machine learning algorithm is more effective than the original RANS model, however, the stability and prediction accuracy of the data-driven method could still be further improved. In the present paper, a fully connected neural network is constructed to predict the eddy viscosity, and this neural network is called as Eddy Viscosity Neural Network (EVNN). Additionally, a tensor-based neural network (TBNN) is also applied to predict the higher-order eddy viscosity relationship between the unclosed quantity and the analytical quantity, and the basis tensors are used to ensure the Galilean invariance. Finally, the closed-loop accuracy of the predicted flow field is realized through multiple modifications. For the method above, the neural network which is combined by EVNN and TBNN, is trained by using the high-fidelity data generated by the large eddy simulation (LES) and the baseline data obtained by the RANS simulation. Compared with the high-fidelity LES results, the results of the modified model exhibit significantly higher accuracy in the posterior velocity field, the mean pressure coefficient, and the mean friction coefficient than the original RANS model. It can be found that the implicit treatment of the linear part of the Reynolds stress can enhance the numerical stability, and the modification of the nonlinear part of the Reynolds stress can better predict the anisotropic characteristics of the flow field. Furthermore, the prediction accuracy is further improved through the multiple modification strategy. Therefore, the combined neural network and multiple modification strategy developed in this paper, have strong potentials in data-driven turbulence modeling and engineering applications in the future.

     

/

返回文章
返回