HYDRODYNAMICS OF A DUAL-CHAMBER OWC WAVE ENERGY CONVERTER IN HEAVING MOTION
-
摘要: 振荡水柱(OWC)波能转换装置因其结构简单、便于安装维护等特点, 被公认为最具应用前景的波能转换技术. 本研究以垂荡式双气室OWC波能转换装置为研究对象, 借助开源代码平台OpenFOAM及基于interFoam求解器开发的造/消波工具箱waves2Foam, 采用流体体积法(VOF)捕捉自由面和六自由度(6DOF)动网格求解器模拟垂荡运动响应, 数值研究在不同入射规则波作用下, 前后气室相对宽度、弹簧弹性系数对装置捕能宽度比及水动力特性的影响规律. 通过与已有的固定情况下的双气室OWC装置结果对比, 并通过对比自由衰减运动响应验证动网格技术, 揭示了本研究中数值模型的合理性和有效性. 计算结果表明, 较宽的后气室结构布置有利于双气室振荡水柱装置在垂荡状态下的波能提取; 前后气室宽度比为1/2时, 垂荡式双气室OWC装置在测试波频段具有最优的捕能宽度比; 相较于固定状态, 垂荡装置的后气室在中高波频段有着更高的捕能宽度比; 装置前后气室内水柱与OWC装置垂荡运动间存在的相位差使得气室内水面相对振幅和相对压强在测试波频段存在多峰值现象, 进一步发现弹装置通过垂向弹簧进行相位控制, 可显著拓宽高效频谱带, 实现较大的捕能宽度比.Abstract: The oscillating water column (OWC) wave energy conversion device have been recognized as the most promising wave energy conversion technology due to the advantages of its simple structure, convenient assembly and easy maintenance. A heave-only dual-chamber OWC device was numerically investigated by a well-developed open source software OpenFOAM coupled with a wave generation and absorption toolbox Waves2Foam. The volume of fluid (VOF) method tracking the water-air interface and the six-degree-freedom (6DOF) Dynamic Mesh solver duplicating the heave motion of the OWC device were employed to examine the influences of the relative width of the front and rear chambers and the spring elastic coefficient on the energy capture width ratio and hydrodynamic characteristics of the device under the actions of different incident regular waves. Through comparing the present results with the existing ones of a fixed dual-chamber OWC wave energy converter, and examining the free-decay motion of a cylinder, the rationality and effectiveness of the present numerical model has been revealed. The results show that the wider rear chamber can make for the extraction of wave energy of the dual-chamber OWC in heave motion. The heave-only dual-chamber OWC device can improve the device performance as the relative width ratio of the front and rear chambers is 1/2, and the rear chamber has larger capture width ratio in the middle and high frequency wave bands, compared with that of the fixed one. Multiple-peak values of the relative water surface elevation and the relative pressure occur in the whole test wave frequency bands due to the phase gap between the dual-chamber OWC device and the water columns in the front and rear chambers. In addition, it is found that by adjusting the spring stiffness coefficient, the wave-frequency bandwidth of high-efficiency can be significantly broadened and larger energy capture width ratio can be achieved.
-
Key words:
- wave energy /
- oscillating water column /
- wave hydrodynamics /
- energy capture width ratio /
- dynamic mesh
-
图 10 相对气室宽度对垂荡式双气室OWC装置前后气室相对压强、前后气室内水面振荡与OWC自身垂荡相位差的影响 (续)
Figure 10. Relative pressure drops and the phase difference between the oscillating water column in the chambers and OWC oscillation motion as a function of the dimensionless frequency
${\omega ^2}h/g$ for different relative chamber length$ {b_1}/h $ (continued)表 1 本研究所使用的波浪参数
Table 1. Wave parameters in this study
${{T} }_ { {\rm{s} } }$ ${\omega ^2}h/{\rm{g}}$ $h/ {\rm{m}} $ $H/ {\rm{m}} $ ${\rm{\lambda } }/ {\rm{m}} $ $ H/\lambda $ 1 2.01215 0.5 0.04 1.5130 0.026438 1.1 1.66294 0.5 0.04 1.7813 0.022456 1.2 1.39733 0.5 0.04 2.0483 0.019528 1.3 1.19062 0.5 0.04 2.3118 0.017303 1.4 1.02661 0.5 0.04 2.5712 0.01557 1.5 0.89429 0.5 0.04 2.8265 0.014152 1.6 0.78600 0.5 0.04 3.0781 0.012995 1.7 0.69625 0.5 0.04 3.3266 0.012024 1.8 0.62103 0.5 0.04 3.5722 0.011198 1.9 0.55738 0.5 0.04 3.8153 0.010484 表 2 数值波浪水槽边界条件设置
Table 2. Boundary conditions of numerical wave tank
Boundary Velocity field Pressure field Volume phase field inlet wave velocity zero gradient wave alpha bottom fixed value (0,0,0) zero gradient zero gradient atmosphere pressure inlet
outlet velocitytotal pressure inlet outlet outlet fixed value (0,0,0) zero gradient zero gradient front and back empty empty empty 表 3 不同分辨率网格条件下气室内波面和压强差标准均方根误差
Table 3. NRMSE of surface elevations and pressure drop under different spatial resolutions around the dual-chamber OWC system
Grid resolution NRMSE/% front chamber rear chamber water surface pressure drop water surface pressure drop coarse 0.735 5.443 0.371 6.417 medium 0.279 0.537 0.131 0.763 fine − − − − 表 4 不同气室宽度参数设置
Table 4. Cases for different front (
${b_1}$ ) and rear (${b_2}$ ) chamber widthsGeometric parameters ($ {e_1}{\text{ = }}{e_1}{\text{ = }}1\% $) $ {d_1}/{\rm{m}} $ ${d_2}/{\rm{m}}$ ${d_3}/{\rm{m}}$ $h/{\rm{m}}$ ${b_1}$ ${b_2}$ ${b_1}/{b_2}$ $ {b_1}/h $ 0.06 0.25 0.25 0.5 0.05 0.25 0.2 0.1 0.06 0.25 0.25 0.5 0.1 0.2 0.5 0.2 0.06 0.25 0.25 0.5 0.15 0.15 1 0.3 0.06 0.25 0.25 0.5 0.2 0.1 2 0.4 0.06 0.25 0.25 0.5 0.25 0.05 5 0.5 -
[1] Rusu E, Onea F. A review of the technologies for wave energy extraction. Clean Energy, 2018, 2(1): 10-19 doi: 10.1093/ce/zky003 [2] Liu C. A tunable resonant oscillating water column wave energy converter. Ocean Engineering, 2016, 116: 82-89 doi: 10.1016/j.oceaneng.2016.02.004 [3] 聂隆锋, 赵西增, 张志杭等. 基于VPM-THINC/QQ模型的波浪高保真模拟. 力学学报, 2019, 51(4): 1043-1053 (Nie Longfeng, Zhao Xizeng, Zhang Zhihang, et al. High-fidelity simulation of wave propagation based on VPM-THINC/QQ Model. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1043-1053 (in Chinese) [4] Liu Y, Li Y, He F, et al. Comparison study of tidal stream and wave energy technology development between China and some western countries. Renewable and Sustainable Energy Reviews, 2017, 76: 701-716 doi: 10.1016/j.rser.2017.03.049 [5] Evans DV. Wave-power absorption by systems of oscillating surface pressure distributions. Journal of Fluid Mechanics, 1982, 114(1): 481-499 [6] Evans DV. The oscillating water column wave-energy device. IMA Journal of Applied Mathematics, 1978, 22(4): 423-433 doi: 10.1093/imamat/22.4.423 [7] Sheng W. Wave energy conversion and hydrodynamics modelling technologies: A review. Renewable and Sustainable Energy Reviews, 2019, 109: 482-498 doi: 10.1016/j.rser.2019.04.030 [8] Evans DV, Porter R. Hydrodynamic characteristics of an oscillating water column device. Applied Ocean Research, 1995, 17(3): 155-164 doi: 10.1016/0141-1187(95)00008-9 [9] Falcão AFO, Henriques JCC. Oscillating-water-column wave energy converters and air turbines: A review. Renewable Energy, 2016, 85: 1391-1424 doi: 10.1016/j.renene.2015.07.086 [10] Rezanejad K, Bhattacharjee J, Guedes Soares C. Stepped sea bottom effects on the efficiency of nearshore oscillating water column device. Ocean Engineering, 2013, 70: 25-38 doi: 10.1016/j.oceaneng.2013.05.029 [11] Deng Z, Huang Z, Law AWK. Wave power extraction from a bottom-mounted oscillating water column converter with a V-shaped channel. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470: 20140074 doi: 10.1098/rspa.2014.0074 [12] Luo Y, Nader J, Cooper P, et al. Nonlinear 2D analysis of the efficiency of fixed oscillating water column wave energy converters. Renewable Energy, 2014, 64: 255-265 doi: 10.1016/j.renene.2013.11.007 [13] Bouali B, Larbi S. Sequential optimization and performance prediction of an oscillating water column wave energy converter. Ocean Engineering, 2017, 131: 162-173 doi: 10.1016/j.oceaneng.2017.01.004 [14] Ning D, Wang R, Zou Q, et al. An experimental investigation of hydrodynamics of a fixed OWC wave energy converter. Applied Energy, 2016, 168: 636-648 doi: 10.1016/j.apenergy.2016.01.107 [15] 王鹏, 邓争志, 王辰等. 振荡水柱式防波堤的水动力特性. 浙江大学学报(工学版), 2019, 53(12): 2335-2341 (Wang Peng, Deng Zhengzhi, Wang Chen, et al. Hydrodynamic characteristics of oscillating water column type breakwater. Journal of Zhejiang University (Engineering Science) , 2019, 53(12): 2335-2341 (in Chinese) doi: 10.3785/j.issn.1008-973X.2019.12.010 [16] Rezanejad K, Bhattacharjee J, Guedes Soares C. Analytical and numerical study of dual-chamber oscillating water columns on stepped bottom. Renewable Energy, 2015, 75: 272-282 doi: 10.1016/j.renene.2014.09.050 [17] He F, Leng J, Zhao X. An experimental investigation into the wave power extraction of a floating box-type breakwater with dual pneumatic chambers. Applied Ocean Research, 2017, 67: 21-30 doi: 10.1016/j.apor.2017.06.009 [18] Ning D, Wang R, Chen L, et al. Experimental investigation of a land-based dual-chamber OWC wave energy converter. Renewable and Sustainable Energy Reviews, 2019, 105: 48-60 doi: 10.1016/j.rser.2019.01.043 [19] Ning D, Wang R, Zhang C. Numerical simulation of a dual-chamber oscillating water column wave energy converter. Sustainability, 2017, 9(9): 1599 doi: 10.3390/su9091599 [20] Ning D, Zhou Y, Zhang C. Hydrodynamic modeling of a novel dual-chamber OWC wave energy converter. Applied Ocean Research, 2018, 78: 180-191 doi: 10.1016/j.apor.2018.06.016 [21] Wang C, Deng Z, Wang P, et al. Wave power extraction from a dual oscillating-water- column system composed of heave-only and onshore units. Energies, 2019, 12(9): 1742 doi: 10.3390/en12091742 [22] Elhanafi A, Macfarlane G, Ning D. Hydrodynamic performance of single-chamber and dual-chamber offshore-stationary oscillating water column devices using CFD. Applied Energy, 2018, 228: 82-96 doi: 10.1016/j.apenergy.2018.06.069 [23] Hsieh M, Lin IH, Dorrell DG, et al. Development of a wave energy converter using a two chamber oscillating water column. IEEE Transactions on Sustainable Energy, 2012, 3(3): 482-497 doi: 10.1109/TSTE.2012.2190769 [24] Deng Z, Wang C, Wang P, et al. Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study. Energy, 2019, 187: 115941 doi: 10.1016/j.energy.2019.115941 [25] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1979(39): 201-225 [26] Weller HG. The development of a new flame area combustion model using conditional averaging//Thermo-Fluids Section Report TF 9307, Imperial College of Science, Technology and Medicine, 1993 [27] Rusche H. Computational fluid dynamics of dispersed two-phase flows at high phase fractions. [PhD Thesis]. London: University of London, 2002 [28] Kuzʹmin D, Lohner R, Turek S. Flux-corrected Transport: Principles, Algorithms, and Applications (Google eBook). 2005: 301 [29] Iturrioz A, Guanche R, Lara JL, et al. Validation of OpenFOAM® for oscillating water column three-dimensional modeling. Ocean Engineering, 2015, 107: 222-236 doi: 10.1016/j.oceaneng.2015.07.051 [30] Jacobsen NG, Fuhrman DR, Fredsøe J. A wave generation toolbox for the open-source CFD library: OpenFoam®. International Journal for Numerical Methods in Fluids, 2012, 70(9): 1073-1088 doi: 10.1002/fld.2726 [31] Deng Z, Wang C, Yao Y, et al. Numerical simulation of an oscillating water column device installed over a submerged breakwater. Journal of Marine Science and Technology, 2020, 25(1): 258-271 doi: 10.1007/s00773-019-00645-0 [32] 王辰, 邓争志, 茆大炜. 台阶式地形上双垂板透空系统的水动力学特性. 浙江大学学报(工学版), 2019, 53(2): 336-346 (Wang Chen, Deng Zhengzhi, Mao Dawei. Hydrodynamic performance of two vertical plates penetrating system mounted over stepped bottom. Journal of Zhejiang University (Engineering Science) , 2019, 53(2): 336-346 (in Chinese) [33] Deng Z, Wang C, Wang C, et al. Wave scattering by twin surface-piercing plates over a stepped bottom: trapped wave energy and energy loss. China Ocean Engineering, 2019, 33(4): 398-411 doi: 10.1007/s13344-019-0038-0 [34] Luo Y, Wang Z, Peng G, et al. Numerical simulation of a heave-only floating OWC (oscillating water column) device. Energy, 2014, 76: 799-806 doi: 10.1016/j.energy.2014.08.079 -