EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂荡双气室振荡水柱波能装置水动力特性研究

郭权势 邓争志 王晓亮 程鹏达

郭权势, 邓争志, 王晓亮, 程鹏达. 垂荡双气室振荡水柱波能装置水动力特性研究. 力学学报, 2021, 53(9): 2515-2527 doi: 10.6052/0459-1879-21-072
引用本文: 郭权势, 邓争志, 王晓亮, 程鹏达. 垂荡双气室振荡水柱波能装置水动力特性研究. 力学学报, 2021, 53(9): 2515-2527 doi: 10.6052/0459-1879-21-072
Guo Quanshi, Deng Zhengzhi, Wang Xiaoliang, Cheng Pengda. Hydrodynamics of a dual-chamber owc wave energy converter in heaving motion. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2515-2527 doi: 10.6052/0459-1879-21-072
Citation: Guo Quanshi, Deng Zhengzhi, Wang Xiaoliang, Cheng Pengda. Hydrodynamics of a dual-chamber owc wave energy converter in heaving motion. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2515-2527 doi: 10.6052/0459-1879-21-072

垂荡双气室振荡水柱波能装置水动力特性研究

doi: 10.6052/0459-1879-21-072
基金项目: 国家自然科学基金(11802313, 12032005), 国家重点研发计划(2018YFC150 5504)和水能资源利用关键技术和湖南省重点实验室开放基金(PKLHD201707)资助项目
详细信息
    作者简介:

    程鹏达, 助理研究员, 主要研究方向: 环境流体力学, 水环境灾害预防和治理. E-mail: pdcheng@imech.ac.cn

  • 中图分类号: O353

HYDRODYNAMICS OF A DUAL-CHAMBER OWC WAVE ENERGY CONVERTER IN HEAVING MOTION

  • 摘要: 振荡水柱(OWC)波能转换装置因其结构简单、便于安装维护等特点, 被公认为最具应用前景的波能转换技术. 本研究以垂荡式双气室OWC波能转换装置为研究对象, 借助开源代码平台OpenFOAM及基于interFoam求解器开发的造/消波工具箱waves2Foam, 采用流体体积法(VOF)捕捉自由面和六自由度(6DOF)动网格求解器模拟垂荡运动响应, 数值研究在不同入射规则波作用下, 前后气室相对宽度、弹簧弹性系数对装置捕能宽度比及水动力特性的影响规律. 通过与已有的固定情况下的双气室OWC装置结果对比, 并通过对比自由衰减运动响应验证动网格技术, 揭示了本研究中数值模型的合理性和有效性. 计算结果表明, 较宽的后气室结构布置有利于双气室振荡水柱装置在垂荡状态下的波能提取; 前后气室宽度比为1/2时, 垂荡式双气室OWC装置在测试波频段具有最优的捕能宽度比; 相较于固定状态, 垂荡装置的后气室在中高波频段有着更高的捕能宽度比; 装置前后气室内水柱与OWC装置垂荡运动间存在的相位差使得气室内水面相对振幅和相对压强在测试波频段存在多峰值现象, 进一步发现弹装置通过垂向弹簧进行相位控制, 可显著拓宽高效频谱带, 实现较大的捕能宽度比.

     

  • 图  1  垂荡式双气室OWC装置数值设置示意图

    Figure  1.  Schematic diagram of an offshore heave-only dual-chamber OWC system

    图  2  数值波浪水槽边界示意图

    Figure  2.  Setup of the numerical wave tank

    图  3  结构物周围不同粗细网格

    Figure  3.  Different spatial resolutions around the dual-chamber OWC system

    图  4  不同分辨率网格的气室内水面振幅与压强差历时曲线

    Figure  4.  Convergence tests of surface elevations and pressure drops in the chambers for grids with different resolutions

    图  5  波浪与浮动式结构物相互作用示意图[34]

    Figure  5.  Sketch diagram of heave-only box[34]

    图  6  结构物相对振幅${\eta _{\rm{b}}}/{A_{\rm{i}}}$的比较

    Figure  6.  Relative heave amplitude ${\eta _{\rm{b}}}/{A_{\rm{i}}}$ comparison of heave-only box

    图  7  Elhanafia等[22]研究的双振荡水柱OWC装置示意图

    Figure  7.  Schematic diagram of the dual-chamber device proposed by Elhanafia et al.[22]

    图  8  当前研究与Elhanafia等[22]捕能宽度比对比

    Figure  8.  Comparison of energy capture width ratio ${\rm{\xi }}$ between the present and Elhanafia’s results[22]

    图  9  相对气室宽度对OWC装置气室内相对波高与OWC装置相对垂荡幅度的影响

    Figure  9.  Relative surface elevations of the front and rear chamber and the relative dual-chamber OWC device heave amplitude against different relative chamber length $ {b_1}/h $

    10  相对气室宽度对垂荡式双气室OWC装置前后气室相对压强、前后气室内水面振荡与OWC自身垂荡相位差的影响

    10.  Relative pressure drops and the phase difference between the oscillating water column in the chambers and OWC oscillation motion as a function of the dimensionless frequency ${\omega ^2}h/g$ for different relative chamber length $ {b_1}/h $

    图  10  相对气室宽度对垂荡式双气室OWC装置前后气室相对压强、前后气室内水面振荡与OWC自身垂荡相位差的影响 (续)

    Figure  10.  Relative pressure drops and the phase difference between the oscillating water column in the chambers and OWC oscillation motion as a function of the dimensionless frequency ${\omega ^2}h/g$ for different relative chamber length $ {b_1}/h $ (continued)

    图  11  相对气室宽度对垂荡式双气室OWC装置气室捕能宽度比的影响

    Figure  11.  Capture width ratio of the heave-only dual OWCs for relative chamber lengths $ {b_1}/h $

    图  12  无量纲弹簧弹性系数K对垂荡式双气室OWC装置各气室捕能宽度比的影响

    Figure  12.  Capture width ratio of the heave-only dual OWCs for different K

    表  1  本研究所使用的波浪参数

    Table  1.   Wave parameters in this study

    ${{T} }_ { {\rm{s} } }$${\omega ^2}h/{\rm{g}}$$h/ {\rm{m}} $$H/ {\rm{m}} $${\rm{\lambda } }/ {\rm{m}} $$ H/\lambda $
    12.012150.50.041.51300.026438
    1.11.662940.50.041.78130.022456
    1.21.397330.50.042.04830.019528
    1.31.190620.50.042.31180.017303
    1.41.026610.50.042.57120.01557
    1.50.894290.50.042.82650.014152
    1.60.786000.50.043.07810.012995
    1.70.696250.50.043.32660.012024
    1.80.621030.50.043.57220.011198
    1.90.557380.50.043.81530.010484
    下载: 导出CSV

    表  2  数值波浪水槽边界条件设置

    Table  2.   Boundary conditions of numerical wave tank

    BoundaryVelocity fieldPressure fieldVolume phase field
    inletwave velocityzero gradientwave alpha
    bottomfixed value (0,0,0)zero gradientzero gradient
    atmospherepressure inlet
    outlet velocity
    total pressureinlet outlet
    outletfixed value (0,0,0)zero gradientzero gradient
    front and backemptyemptyempty
    下载: 导出CSV

    表  3  不同分辨率网格条件下气室内波面和压强差标准均方根误差

    Table  3.   NRMSE of surface elevations and pressure drop under different spatial resolutions around the dual-chamber OWC system

    Grid resolutionNRMSE/%
    front chamberrear chamber
    water surfacepressure dropwater surfacepressure drop
    coarse0.7355.4430.3716.417
    medium0.2790.5370.1310.763
    fine
    下载: 导出CSV

    表  4  不同气室宽度参数设置

    Table  4.   Cases for different front (${b_1}$) and rear (${b_2}$) chamber widths

    Geometric parameters ($ {e_1}{\text{ = }}{e_1}{\text{ = }}1\% $)
    $ {d_1}/{\rm{m}} $${d_2}/{\rm{m}}$${d_3}/{\rm{m}}$$h/{\rm{m}}$${b_1}$${b_2}$${b_1}/{b_2}$$ {b_1}/h $
    0.060.250.250.50.050.250.20.1
    0.060.250.250.50.10.20.50.2
    0.060.250.250.50.150.1510.3
    0.060.250.250.50.20.120.4
    0.060.250.250.50.250.0550.5
    下载: 导出CSV
  • [1] Rusu E, Onea F. A review of the technologies for wave energy extraction. Clean Energy, 2018, 2(1): 10-19 doi: 10.1093/ce/zky003
    [2] Liu C. A tunable resonant oscillating water column wave energy converter. Ocean Engineering, 2016, 116: 82-89 doi: 10.1016/j.oceaneng.2016.02.004
    [3] 聂隆锋, 赵西增, 张志杭等. 基于VPM-THINC/QQ模型的波浪高保真模拟. 力学学报, 2019, 51(4): 1043-1053 (Nie Longfeng, Zhao Xizeng, Zhang Zhihang, et al. High-fidelity simulation of wave propagation based on VPM-THINC/QQ Model. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1043-1053 (in Chinese)
    [4] Liu Y, Li Y, He F, et al. Comparison study of tidal stream and wave energy technology development between China and some western countries. Renewable and Sustainable Energy Reviews, 2017, 76: 701-716 doi: 10.1016/j.rser.2017.03.049
    [5] Evans DV. Wave-power absorption by systems of oscillating surface pressure distributions. Journal of Fluid Mechanics, 1982, 114(1): 481-499
    [6] Evans DV. The oscillating water column wave-energy device. IMA Journal of Applied Mathematics, 1978, 22(4): 423-433 doi: 10.1093/imamat/22.4.423
    [7] Sheng W. Wave energy conversion and hydrodynamics modelling technologies: A review. Renewable and Sustainable Energy Reviews, 2019, 109: 482-498 doi: 10.1016/j.rser.2019.04.030
    [8] Evans DV, Porter R. Hydrodynamic characteristics of an oscillating water column device. Applied Ocean Research, 1995, 17(3): 155-164 doi: 10.1016/0141-1187(95)00008-9
    [9] Falcão AFO, Henriques JCC. Oscillating-water-column wave energy converters and air turbines: A review. Renewable Energy, 2016, 85: 1391-1424 doi: 10.1016/j.renene.2015.07.086
    [10] Rezanejad K, Bhattacharjee J, Guedes Soares C. Stepped sea bottom effects on the efficiency of nearshore oscillating water column device. Ocean Engineering, 2013, 70: 25-38 doi: 10.1016/j.oceaneng.2013.05.029
    [11] Deng Z, Huang Z, Law AWK. Wave power extraction from a bottom-mounted oscillating water column converter with a V-shaped channel. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470: 20140074 doi: 10.1098/rspa.2014.0074
    [12] Luo Y, Nader J, Cooper P, et al. Nonlinear 2D analysis of the efficiency of fixed oscillating water column wave energy converters. Renewable Energy, 2014, 64: 255-265 doi: 10.1016/j.renene.2013.11.007
    [13] Bouali B, Larbi S. Sequential optimization and performance prediction of an oscillating water column wave energy converter. Ocean Engineering, 2017, 131: 162-173 doi: 10.1016/j.oceaneng.2017.01.004
    [14] Ning D, Wang R, Zou Q, et al. An experimental investigation of hydrodynamics of a fixed OWC wave energy converter. Applied Energy, 2016, 168: 636-648 doi: 10.1016/j.apenergy.2016.01.107
    [15] 王鹏, 邓争志, 王辰等. 振荡水柱式防波堤的水动力特性. 浙江大学学报(工学版), 2019, 53(12): 2335-2341 (Wang Peng, Deng Zhengzhi, Wang Chen, et al. Hydrodynamic characteristics of oscillating water column type breakwater. Journal of Zhejiang University (Engineering Science) , 2019, 53(12): 2335-2341 (in Chinese) doi: 10.3785/j.issn.1008-973X.2019.12.010
    [16] Rezanejad K, Bhattacharjee J, Guedes Soares C. Analytical and numerical study of dual-chamber oscillating water columns on stepped bottom. Renewable Energy, 2015, 75: 272-282 doi: 10.1016/j.renene.2014.09.050
    [17] He F, Leng J, Zhao X. An experimental investigation into the wave power extraction of a floating box-type breakwater with dual pneumatic chambers. Applied Ocean Research, 2017, 67: 21-30 doi: 10.1016/j.apor.2017.06.009
    [18] Ning D, Wang R, Chen L, et al. Experimental investigation of a land-based dual-chamber OWC wave energy converter. Renewable and Sustainable Energy Reviews, 2019, 105: 48-60 doi: 10.1016/j.rser.2019.01.043
    [19] Ning D, Wang R, Zhang C. Numerical simulation of a dual-chamber oscillating water column wave energy converter. Sustainability, 2017, 9(9): 1599 doi: 10.3390/su9091599
    [20] Ning D, Zhou Y, Zhang C. Hydrodynamic modeling of a novel dual-chamber OWC wave energy converter. Applied Ocean Research, 2018, 78: 180-191 doi: 10.1016/j.apor.2018.06.016
    [21] Wang C, Deng Z, Wang P, et al. Wave power extraction from a dual oscillating-water- column system composed of heave-only and onshore units. Energies, 2019, 12(9): 1742 doi: 10.3390/en12091742
    [22] Elhanafi A, Macfarlane G, Ning D. Hydrodynamic performance of single-chamber and dual-chamber offshore-stationary oscillating water column devices using CFD. Applied Energy, 2018, 228: 82-96 doi: 10.1016/j.apenergy.2018.06.069
    [23] Hsieh M, Lin IH, Dorrell DG, et al. Development of a wave energy converter using a two chamber oscillating water column. IEEE Transactions on Sustainable Energy, 2012, 3(3): 482-497 doi: 10.1109/TSTE.2012.2190769
    [24] Deng Z, Wang C, Wang P, et al. Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study. Energy, 2019, 187: 115941 doi: 10.1016/j.energy.2019.115941
    [25] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1979(39): 201-225
    [26] Weller HG. The development of a new flame area combustion model using conditional averaging//Thermo-Fluids Section Report TF 9307, Imperial College of Science, Technology and Medicine, 1993
    [27] Rusche H. Computational fluid dynamics of dispersed two-phase flows at high phase fractions. [PhD Thesis]. London: University of London, 2002
    [28] Kuzʹmin D, Lohner R, Turek S. Flux-corrected Transport: Principles, Algorithms, and Applications (Google eBook). 2005: 301
    [29] Iturrioz A, Guanche R, Lara JL, et al. Validation of OpenFOAM® for oscillating water column three-dimensional modeling. Ocean Engineering, 2015, 107: 222-236 doi: 10.1016/j.oceaneng.2015.07.051
    [30] Jacobsen NG, Fuhrman DR, Fredsøe J. A wave generation toolbox for the open-source CFD library: OpenFoam®. International Journal for Numerical Methods in Fluids, 2012, 70(9): 1073-1088 doi: 10.1002/fld.2726
    [31] Deng Z, Wang C, Yao Y, et al. Numerical simulation of an oscillating water column device installed over a submerged breakwater. Journal of Marine Science and Technology, 2020, 25(1): 258-271 doi: 10.1007/s00773-019-00645-0
    [32] 王辰, 邓争志, 茆大炜. 台阶式地形上双垂板透空系统的水动力学特性. 浙江大学学报(工学版), 2019, 53(2): 336-346 (Wang Chen, Deng Zhengzhi, Mao Dawei. Hydrodynamic performance of two vertical plates penetrating system mounted over stepped bottom. Journal of Zhejiang University (Engineering Science), 2019, 53(2): 336-346 (in Chinese)
    [33] Deng Z, Wang C, Wang C, et al. Wave scattering by twin surface-piercing plates over a stepped bottom: trapped wave energy and energy loss. China Ocean Engineering, 2019, 33(4): 398-411 doi: 10.1007/s13344-019-0038-0
    [34] Luo Y, Wang Z, Peng G, et al. Numerical simulation of a heave-only floating OWC (oscillating water column) device. Energy, 2014, 76: 799-806 doi: 10.1016/j.energy.2014.08.079
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  41
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-19
  • 录用日期:  2021-08-09
  • 网络出版日期:  2021-08-09
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回