STUDY ON EVOLUTION MODEL OF GASEOUS DETONATION WAVE IN PERIODIC INHOMOGENEOUS MEDIUM
-
摘要: 气相爆轰波在周期性非均匀介质中的起爆, 稳态传播和失效机制都极为复杂, 很多物理机制尚不明确, 是当前爆轰物理领域研究的热点和难点. 本文使用反应欧拉方程和两步化学反应模型对爆轰波在非均匀介质中的传播机理进行了数值模拟研究, 非均匀性由横向周期性分布的温度扰动体现, 重点分析不同波长、不同幅度的温度扰动对波阵面波系结构的影响. 计算结果表明, ZND爆轰波在温度扰动下向胞格爆轰波的转变主要受制于两种竞争性因素: 一是爆轰波内在的不稳定性; 二是温度扰动的波长和幅度, 前者是内因, 后者是外因. 温度扰动的存在抑制横波的发展, 延迟了ZND爆轰波向胞格爆轰波的演化, 并且内在不稳定性的增加可以减慢这种延迟现象. 这说明, 温度扰动可以在一定的范围内抑制胞格不稳定性的发展, 但是不能够终止这一过程. 温度的不连续性使得爆轰波阵面更为扭曲, 并在横波附近存在较弱的三波点结构, 即温度扰动可增加爆轰波固有的不稳定性, 改变爆轰波阵面的传播机理. 幅值较大的人工温度扰动可抑制爆轰波的传播和爆轰波自身的不稳定性. 爆轰波阵面胞格结构的形成取决于温度扰动与其自身的不稳定性.Abstract: The initiation, steady propagation and failure mechanism of gaseous detonation wave in periodic inhomogeneous media are very complex, and many physical mechanisms are still unclear, which is an active topic in detonation physics. Numerical simulation of propagation of gaseous detonations in the inhomogeneous medium is studied by using the reactive Euler equations coupled with a two-step chemical reaction model. The inhomogeneity is generated by placing artificial temperature perturbations with different wavelengths and amplitudes. The influence of temperature disturbance with different wavelength and amplitude on the structure of wave front is analyzed. The results show that, the transition of ZND detonation to cellular detonation under artificial temperature disturbance is mainly controlled by two competitive factors: one is the intrinsic instability of detonation wave, the other is the wavelength and amplitude of artificial disturbance, the former is the internal factor, the latter is the external factor. The existence of artificial temperature disturbance delays the evolution of ZND detonation to cellular detonation by suppressing the development of shear wave, and the increase of internal instability can slow down this delay phenomenon. This shows that the artificial temperature disturbance can restrain the development of cell instability in a certain range, but it cannot stop the process. The discontinuity of temperature makes the detonation wave front more distorted, which leads to the existence of a weak triple-wave structure near the shear wave, which is, the artificial disturbance increases the inherent instability of detonation wave and changes the propagation mechanism of detonation wave front. The propagation of detonation and the instability of detonation are restrained by the artificial temperature disturbance with large amplitude. The formation of detonation front cellular structure depends on the artificial temperature disturbance and its own instability.
-
Key words:
- inhomogeneity /
- temperature perturbations /
- gaseous detonation /
- instability /
- cellular structure
-
表 1 爆轰参数
Table 1. Detonation parameters
Parameter Value Unit R 218.79 J/kg· K p0 50 kPa T0 295 K c0 304.86 m/s ρ0 0.775 kg/m3 Q/(RT0) 19.7 − γ 1.44 − MCJ 5.6 − ${\varepsilon _{\rm{I}}}$ 4.8 − ${\varepsilon _{\rm{R}}}$ 1.0 − kI = ${\tilde k_{{\rm{I}}}}{x_{{\text{ref}}}}/{c_0}$ 1.3875 − kR = ${\tilde k_{\text{R}}}{x_{{\text{ref}}}}/{c_0}$ 2.0~5.0 − -
[1] Iwata K, Imamura O, Akihama K, et al. Numerical study of self-sustained oblique detonation in a non-uniform mixture. Proceedings of the Combustion Institute, 2021, 38(3): 3651-3659 doi: 10.1016/j.proci.2020.07.070 [2] Azadboni RK, Heidari A, Boeck LR, et al. The effect of concentration gradients on deflagration-to-detonation transition in a rectangular channel with and without obstructions—A numerical study. International Journal of Hydrogen Energy, 2019, 44(13): 7032-7040 doi: 10.1016/j.ijhydene.2019.01.157 [3] Zhu YJ, Gao LK. Effect of reactive gas mixture distributions on the flame evolution in shock accelerated flow. Acta Astronautica, 2021, 179: 484-494 [4] Zhuang YJ, Li Q, Dai P, et al. Autoignition and detonation characteristics of n-heptane/air mixture with water droplets. Fuel, 2020, 266: 117077 doi: 10.1016/j.fuel.2020.117077 [5] Luong MB, Desai S, Hernández Pérez FE, et al. A statistical analysis of developing knock intensity in a mixture with temperature inhomogeneities. Proceedings of the Combustion Institute, 2021, 38(4): 5781-5789 doi: 10.1016/j.proci.2020.05.044 [6] Ishii K, Kojima M. Behavior of detonation propagation in mixtures with concentration gradients. Shock Waves, 2007, 17: 95-102 doi: 10.1007/s00193-007-0093-y [7] Vollmer KG, Ettner F, Sattelmayer T. Deflagration-to-detonation transition in hydrogen/air mixtures with a concentration gradient. Combustion Science and Technology, 2012, 10-11: 1903-1915 [8] Boeck LR, Berger FM, Hasslberger J, et al. Detonation propagation in hydrogen-air mixtures with transverse concentration gradients, Shock Waves, 2016, 26(2): 181-192 [9] Azadboni RK, Heidari A, Wen, JX. Numerical studies of flame acceleration and onset of detonation in homogenous and inhomogeneous mixture. Journal of Loss Prevention in the Process Industries, 2020, 64: 104063 doi: 10.1016/j.jlp.2020.104063 [10] Ma WJ, Wang C, Han WH. Effect of concentration inhomogeneity on the pulsating instability of hydrogen–oxygen detonations. Shock Waves, 2020, 30: 703-711 [11] Song QG, Han Y, Cao W. Numerical investigation of self-sustaining modes of 2D planar detonations under concentration gradients in hydrogen–oxygen mixtures. International Journal of Hydrogen Energy, 2020, 45(53): 29606-29615 doi: 10.1016/j.ijhydene.2020.08.014 [12] Ettner F, Vollmer KG, Sattelmayer T. Mach reflection in detonations propagating through a gas with a concentration gradient. Shock Waves, 2013, 23(3): 201-206 doi: 10.1007/s00193-012-0385-8 [13] 蔺伟, 宋清官, 王成等. 浓度梯度对瓦斯爆炸影响的数值模拟. 北京理工大学学报, 2015, 35(4): 336-340 (Lin Wei, Song Qingguan, Wang Cheng, et al. Numerical investigation about the effect of concentration gradient on methane explosion. Transaction of Beijing Institute of Technology, 2015, 35(4): 336-340 (in Chinese) [14] Han WH, Wang C, Law CK. Role of transversal concentration gradient in detonation propagation. Journal of Fluid Mechanics, 2019, 865: 602-649 doi: 10.1017/jfm.2019.37 [15] Kuznetsov MS, Dorofeev SB, Efimenko AA, et al. Experimental and numerical studies on transmission of gaseous detonation to a less sensitive mixture. Shock Waves, 1997, 7(5): 294-304 [16] Kuznetsov MS, Alekseev VI, Dorofeev SB, et al. Detonation propagation, decay, and reinitiation in nonuniform gaseous mixtures. Symposium (International) on Combustion, 1998, 27: 2241-2247 doi: 10.1016/S0082-0784(98)80073-8 [17] Thomas GO, Sutton P, Edwards DH. The behavior of detonation waves at concentration gradients. Combustion and Flame, 1991, 84: 312-322 doi: 10.1016/0010-2180(91)90008-Y [18] 王春, 赵伟, 孙英英等. 爆轰波穿越惰性气团时的透射激波参数分析. 空气动力学学报, 2007, 25(3): 330-335 (Wang Chun, Zhao Wei, Sun Yingying, et al. Analysis of shock parameters when detonation wave transmits an inert gas zone. Acta Aerodynamica Sinica, 2007, 25(3): 330-335 (in Chinese) doi: 10.3969/j.issn.0258-1825.2007.03.009 [19] Mi XC, Higgins AJ, Ng HD, et al. Effect of spatial inhomogeneities on the propagation limit of gaseous detonations//26th ICDERS, Boston, 2017 [20] Mi XC, Higgins AJ. Influence of discrete sources on detonation propagation in a Burgers equation analog system. Physical Review E, 2015, 91(5): 053014 doi: 10.1103/PhysRevE.91.053014 [21] Mi XC, Higgins AJ, Goroshin S, et al. The influence of spatial discreteness on the thermo-diffusive instability of flame propagation with infinite Lewis number. Proceedings of the Combustion Institute, 2017, 36(2): 2359-2366 doi: 10.1016/j.proci.2016.06.095 [22] Lam F, Mi XC, Higgins AJ. Front roughening of flames in discrete media. Physical Review E, 2017, 96(1): 013107 doi: 10.1103/PhysRevE.96.013107 [23] Li J, Mi XC, Higgins AJ. Effect of spatial heterogeneity on near-limit propagation of a pressure-dependent detonation. Proceedings of the Combustion Institute, 2015, 35(2): 2025-2032 doi: 10.1016/j.proci.2014.06.039 [24] Higgins A. Discrete effects in energetic materials. Journal of physics Conference series, 2014: 052016 [25] Wang Y, Huang CY, Deiterding R, et al. Propagation of gaseous detonation across inert layers. Proceedings of the Combustion Institute, 2021, 38(3): 3555-3563 doi: 10.1016/j.proci.2020.07.022 [26] Gong JS, Ma H. Experimental study on pulse detonation engine with two-phase inhomogeneous mixture. International Journal of Aerospace Engineering, 2020, 2020(4): 1-11 [27] Gaillard T, Davidenko D, Dupoirieux F. Numerical optimization in nonreacting conditions of the injector geometry for a continuous detonation wave rocket engine. Acta Astronautica, 2015, 111: 334-344 doi: 10.1016/j.actaastro.2015.02.006 [28] 周蕊, 李晓鹏. 连续旋转爆轰发动机冷流场的混合特性研究. 航空学报, 2016, 37(12): 3668-3674 (Zhou Rui, Li Xiaopeng. Numerical investigation of mixing characteristic of cold continuously rotating detonation engine. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3668-3674 (in Chinese) [29] 蒋弢, 翁春生. 进气温度和当量比对脉冲爆轰发动机工作过程影响. 航空动力学报, 2015, 30(1): 29-37 (Jiang Tao, Weng Chunsheng. Effect of inlet temperature and equivalence ratio on working process of pulse detonation engine. Journal of Aerospace Power, 2015, 30(1): 29-37 (in Chinese) [30] 孟庆洋, 赵宁波, 郑洪涛等. 非预混条件下的旋转爆轰燃烧室双波头演化过程数值模拟. 航空动力学报, 2019, 34(1): 51-62 ((Meng Qingyang, Zhao Ningbo, Zheng, Hongtao, et al. Numerical study on the two-wave transition process in rotating detonation combustor under separate injection condition. Journal of Aerospace Power, 2019, 34(1): 51-62 (in Chinese) [31] Nordeen CA, Schwer D, Schauer F, et al. Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine. Shock Waves, 2015, 26(4): 1-12 [32] Ng HD, Radulescu MI, Higgins AJ, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. Combustiong Theory and Modelling, 2005, 9(3): 385-401 doi: 10.1080/13647830500307758 [33] Li J, Ning JG. Experimental and numerical studies on detonation reflections over cylindrical convex surfaces. Combustion and Flame, 2018, 198: 130-145 doi: 10.1016/j.combustflame.2018.07.017 [34] Yang LT, Rana OF, Di Martino B, et al. High Performance Computing and Communications. Berlin: Springer, 2015: 916 [35] Kaps P, Rentrop P. Generalized Runge-Kutta methods of order four with step size control for stiff ordinary differential equations. Numerische Mathematik, 1979, 33: 55-68 doi: 10.1007/BF01396495 -