EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期性非均匀介质中气相爆轰波演变模式研究

陈达 宁建国 李健

陈达, 宁建国, 李健. 周期性非均匀介质中气相爆轰波演变模式研究. 力学学报, 2021, 53(10): 2865-2879 doi: 10.6052/0459-1879-21-069
引用本文: 陈达, 宁建国, 李健. 周期性非均匀介质中气相爆轰波演变模式研究. 力学学报, 2021, 53(10): 2865-2879 doi: 10.6052/0459-1879-21-069
Chen Da, Ning Jianguo, Li Jian. Study on evolution model of gaseous detonation wave in periodic inhomogeneous medium. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2865-2879 doi: 10.6052/0459-1879-21-069
Citation: Chen Da, Ning Jianguo, Li Jian. Study on evolution model of gaseous detonation wave in periodic inhomogeneous medium. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2865-2879 doi: 10.6052/0459-1879-21-069

周期性非均匀介质中气相爆轰波演变模式研究

doi: 10.6052/0459-1879-21-069
基金项目: 国家自然科学基金(12072036, 12032006)和北京理工大学科技创新计划(2021CX02002)资助项目
详细信息
    作者简介:

    李健, 讲师, 主要研究方向: 爆轰物理. E-mail: jian_li@bit.edu.cn

  • 中图分类号: O382.1

STUDY ON EVOLUTION MODEL OF GASEOUS DETONATION WAVE IN PERIODIC INHOMOGENEOUS MEDIUM

  • 摘要: 气相爆轰波在周期性非均匀介质中的起爆, 稳态传播和失效机制都极为复杂, 很多物理机制尚不明确, 是当前爆轰物理领域研究的热点和难点. 本文使用反应欧拉方程和两步化学反应模型对爆轰波在非均匀介质中的传播机理进行了数值模拟研究, 非均匀性由横向周期性分布的温度扰动体现, 重点分析不同波长、不同幅度的温度扰动对波阵面波系结构的影响. 计算结果表明, ZND爆轰波在温度扰动下向胞格爆轰波的转变主要受制于两种竞争性因素: 一是爆轰波内在的不稳定性; 二是温度扰动的波长和幅度, 前者是内因, 后者是外因. 温度扰动的存在抑制横波的发展, 延迟了ZND爆轰波向胞格爆轰波的演化, 并且内在不稳定性的增加可以减慢这种延迟现象. 这说明, 温度扰动可以在一定的范围内抑制胞格不稳定性的发展, 但是不能够终止这一过程. 温度的不连续性使得爆轰波阵面更为扭曲, 并在横波附近存在较弱的三波点结构, 即温度扰动可增加爆轰波固有的不稳定性, 改变爆轰波阵面的传播机理. 幅值较大的人工温度扰动可抑制爆轰波的传播和爆轰波自身的不稳定性. 爆轰波阵面胞格结构的形成取决于温度扰动与其自身的不稳定性.

     

  • 图  1  计算域设置

    Figure  1.  Setup of the simulation domain

    图  2  一维爆轰波网格分辨率测试

    Figure  2.  Numerical resolution test for one-dimensional detonations

    图  3  二维胞格爆轰波网格分辨率测试(无扰动, kR = 2.0)

    Figure  3.  Numerical resolution test for transition of ZND to cellular detonations (without disturbance, kR = 2.0)

    图  4  压力历史和速度曲线图

    Figure  4.  Pressure history curve

    图  5  二维激波波阵面演化图, 温度扰动振幅A = 105 K

    Figure  5.  Evolution of shock front structures during the two-dimensional with A = 105 K

    图  6  不同温度扰动幅值下激波波阵面纹影图和最大压力历史

    Figure  6.  Schlieren photography of the shock front at the same instant for cases with different temperature perturbations and pressure history

    图  7  二维爆轰波波阵面演化图, 温度扰动振幅A = 105 K, kR = 2.0

    Figure  7.  Evolution of detonation front structures during the two-dimensional with A = 105 K and kR = 2.0

    图  8  不同时刻下沿中心线和边界线压力与温度分布和流线图, 温度扰动振幅A = 105 K, kR = 2.0

    Figure  8.  Pressure, temperature distribution and streamlines along the centering and boundary lines at two instants with A = 105 K, kR = 2.0

    图  9  不同稳定性下爆轰波波阵面纹影、温度扰动幅度以及胞格结构

    Figure  9.  Schlieren photography of the detonation front at the same instant for cases with different instability

    图  10  均匀介质中无扰动时ZND爆轰波到胞格爆轰波的演化

    Figure  10.  Transition from ZND to cellular detonation without artificial perturbations

    图  11  存在人工温度扰动时的数值胞格, A = 15 K, s = 10ΔI

    Figure  11.  Numerical smoked foils for cases with artificial perturbations of A = 15 K, s = 10ΔI

    图  12  存在人工温度扰动时的数值胞格, A = 15 K, s = 20ΔI

    Figure  12.  Numerical smoked foils for cases with artificial perturbations of A = 15 K, s = 20ΔI

    图  13  存在人工温度扰动时的数值胞格, A = 15 K, s = 40ΔI

    Figure  13.  Numerical smoked foils for cases with artificial perturbations of A = 15 K, s = 40ΔI

    图  14  存在人工温度扰动时爆轰波的压力历史曲线

    Figure  14.  Pressure history for cases with artificial perturbations

    图  16  存在不同振幅人工温度扰动时(kR = 4.0, s = 20ΔI)的压力历史曲线图

    Figure  16.  Pressure history for cases with artificial perturbations of kR = 4, s = 20ΔI

    图  17  人工温度扰动s = 20ΔI, kR = 4.0时,波阵面的纹影结构

    Figure  17.  Schlieren photography of detonation front under artificial perturbations with different amplitude with s = 20ΔI and $ {k_{\text{R}}} $ = 4.0

    图  15  存在不同振幅人工温度扰动时(kR = 4.0, s = 20ΔI)的数值胞格

    Figure  15.  Numerical smoked foils for cases with artificial perturbations of kR = 4, s = 20ΔI

    表  1  爆轰参数

    Table  1.   Detonation parameters

    ParameterValueUnit
    R 218.79 J/kg· K
    p0 50 kPa
    T0
    295
    K
    c0 304.86 m/s
    ρ0 0.775 kg/m3
    Q/(RT0) 19.7
    γ 1.44
    MCJ 5.6
    ${\varepsilon _{\rm{I}}}$ 4.8
    ${\varepsilon _{\rm{R}}}$ 1.0
    kI = ${\tilde k_{{\rm{I}}}}{x_{{\text{ref}}}}/{c_0}$ 1.3875
    kR = ${\tilde k_{\text{R}}}{x_{{\text{ref}}}}/{c_0}$ 2.0~5.0
    下载: 导出CSV
  • [1] Iwata K, Imamura O, Akihama K, et al. Numerical study of self-sustained oblique detonation in a non-uniform mixture. Proceedings of the Combustion Institute, 2021, 38(3): 3651-3659 doi: 10.1016/j.proci.2020.07.070
    [2] Azadboni RK, Heidari A, Boeck LR, et al. The effect of concentration gradients on deflagration-to-detonation transition in a rectangular channel with and without obstructions—A numerical study. International Journal of Hydrogen Energy, 2019, 44(13): 7032-7040 doi: 10.1016/j.ijhydene.2019.01.157
    [3] Zhu YJ, Gao LK. Effect of reactive gas mixture distributions on the flame evolution in shock accelerated flow. Acta Astronautica, 2021, 179: 484-494
    [4] Zhuang YJ, Li Q, Dai P, et al. Autoignition and detonation characteristics of n-heptane/air mixture with water droplets. Fuel, 2020, 266: 117077 doi: 10.1016/j.fuel.2020.117077
    [5] Luong MB, Desai S, Hernández Pérez FE, et al. A statistical analysis of developing knock intensity in a mixture with temperature inhomogeneities. Proceedings of the Combustion Institute, 2021, 38(4): 5781-5789 doi: 10.1016/j.proci.2020.05.044
    [6] Ishii K, Kojima M. Behavior of detonation propagation in mixtures with concentration gradients. Shock Waves, 2007, 17: 95-102 doi: 10.1007/s00193-007-0093-y
    [7] Vollmer KG, Ettner F, Sattelmayer T. Deflagration-to-detonation transition in hydrogen/air mixtures with a concentration gradient. Combustion Science and Technology, 2012, 10-11: 1903-1915
    [8] Boeck LR, Berger FM, Hasslberger J, et al. Detonation propagation in hydrogen-air mixtures with transverse concentration gradients, Shock Waves, 2016, 26(2): 181-192
    [9] Azadboni RK, Heidari A, Wen, JX. Numerical studies of flame acceleration and onset of detonation in homogenous and inhomogeneous mixture. Journal of Loss Prevention in the Process Industries, 2020, 64: 104063 doi: 10.1016/j.jlp.2020.104063
    [10] Ma WJ, Wang C, Han WH. Effect of concentration inhomogeneity on the pulsating instability of hydrogen–oxygen detonations. Shock Waves, 2020, 30: 703-711
    [11] Song QG, Han Y, Cao W. Numerical investigation of self-sustaining modes of 2D planar detonations under concentration gradients in hydrogen–oxygen mixtures. International Journal of Hydrogen Energy, 2020, 45(53): 29606-29615 doi: 10.1016/j.ijhydene.2020.08.014
    [12] Ettner F, Vollmer KG, Sattelmayer T. Mach reflection in detonations propagating through a gas with a concentration gradient. Shock Waves, 2013, 23(3): 201-206 doi: 10.1007/s00193-012-0385-8
    [13] 蔺伟, 宋清官, 王成等. 浓度梯度对瓦斯爆炸影响的数值模拟. 北京理工大学学报, 2015, 35(4): 336-340 (Lin Wei, Song Qingguan, Wang Cheng, et al. Numerical investigation about the effect of concentration gradient on methane explosion. Transaction of Beijing Institute of Technology, 2015, 35(4): 336-340 (in Chinese)
    [14] Han WH, Wang C, Law CK. Role of transversal concentration gradient in detonation propagation. Journal of Fluid Mechanics, 2019, 865: 602-649 doi: 10.1017/jfm.2019.37
    [15] Kuznetsov MS, Dorofeev SB, Efimenko AA, et al. Experimental and numerical studies on transmission of gaseous detonation to a less sensitive mixture. Shock Waves, 1997, 7(5): 294-304
    [16] Kuznetsov MS, Alekseev VI, Dorofeev SB, et al. Detonation propagation, decay, and reinitiation in nonuniform gaseous mixtures. Symposium (International) on Combustion, 1998, 27: 2241-2247 doi: 10.1016/S0082-0784(98)80073-8
    [17] Thomas GO, Sutton P, Edwards DH. The behavior of detonation waves at concentration gradients. Combustion and Flame, 1991, 84: 312-322 doi: 10.1016/0010-2180(91)90008-Y
    [18] 王春, 赵伟, 孙英英等. 爆轰波穿越惰性气团时的透射激波参数分析. 空气动力学学报, 2007, 25(3): 330-335 (Wang Chun, Zhao Wei, Sun Yingying, et al. Analysis of shock parameters when detonation wave transmits an inert gas zone. Acta Aerodynamica Sinica, 2007, 25(3): 330-335 (in Chinese) doi: 10.3969/j.issn.0258-1825.2007.03.009
    [19] Mi XC, Higgins AJ, Ng HD, et al. Effect of spatial inhomogeneities on the propagation limit of gaseous detonations//26th ICDERS, Boston, 2017
    [20] Mi XC, Higgins AJ. Influence of discrete sources on detonation propagation in a Burgers equation analog system. Physical Review E, 2015, 91(5): 053014 doi: 10.1103/PhysRevE.91.053014
    [21] Mi XC, Higgins AJ, Goroshin S, et al. The influence of spatial discreteness on the thermo-diffusive instability of flame propagation with infinite Lewis number. Proceedings of the Combustion Institute, 2017, 36(2): 2359-2366 doi: 10.1016/j.proci.2016.06.095
    [22] Lam F, Mi XC, Higgins AJ. Front roughening of flames in discrete media. Physical Review E, 2017, 96(1): 013107 doi: 10.1103/PhysRevE.96.013107
    [23] Li J, Mi XC, Higgins AJ. Effect of spatial heterogeneity on near-limit propagation of a pressure-dependent detonation. Proceedings of the Combustion Institute, 2015, 35(2): 2025-2032 doi: 10.1016/j.proci.2014.06.039
    [24] Higgins A. Discrete effects in energetic materials. Journal of physics Conference series, 2014: 052016
    [25] Wang Y, Huang CY, Deiterding R, et al. Propagation of gaseous detonation across inert layers. Proceedings of the Combustion Institute, 2021, 38(3): 3555-3563 doi: 10.1016/j.proci.2020.07.022
    [26] Gong JS, Ma H. Experimental study on pulse detonation engine with two-phase inhomogeneous mixture. International Journal of Aerospace Engineering, 2020, 2020(4): 1-11
    [27] Gaillard T, Davidenko D, Dupoirieux F. Numerical optimization in nonreacting conditions of the injector geometry for a continuous detonation wave rocket engine. Acta Astronautica, 2015, 111: 334-344 doi: 10.1016/j.actaastro.2015.02.006
    [28] 周蕊, 李晓鹏. 连续旋转爆轰发动机冷流场的混合特性研究. 航空学报, 2016, 37(12): 3668-3674 (Zhou Rui, Li Xiaopeng. Numerical investigation of mixing characteristic of cold continuously rotating detonation engine. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3668-3674 (in Chinese)
    [29] 蒋弢, 翁春生. 进气温度和当量比对脉冲爆轰发动机工作过程影响. 航空动力学报, 2015, 30(1): 29-37 (Jiang Tao, Weng Chunsheng. Effect of inlet temperature and equivalence ratio on working process of pulse detonation engine. Journal of Aerospace Power, 2015, 30(1): 29-37 (in Chinese)
    [30] 孟庆洋, 赵宁波, 郑洪涛等. 非预混条件下的旋转爆轰燃烧室双波头演化过程数值模拟. 航空动力学报, 2019, 34(1): 51-62 ((Meng Qingyang, Zhao Ningbo, Zheng, Hongtao, et al. Numerical study on the two-wave transition process in rotating detonation combustor under separate injection condition. Journal of Aerospace Power, 2019, 34(1): 51-62 (in Chinese)
    [31] Nordeen CA, Schwer D, Schauer F, et al. Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine. Shock Waves, 2015, 26(4): 1-12
    [32] Ng HD, Radulescu MI, Higgins AJ, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. Combustiong Theory and Modelling, 2005, 9(3): 385-401 doi: 10.1080/13647830500307758
    [33] Li J, Ning JG. Experimental and numerical studies on detonation reflections over cylindrical convex surfaces. Combustion and Flame, 2018, 198: 130-145 doi: 10.1016/j.combustflame.2018.07.017
    [34] Yang LT, Rana OF, Di Martino B, et al. High Performance Computing and Communications. Berlin: Springer, 2015: 916
    [35] Kaps P, Rentrop P. Generalized Runge-Kutta methods of order four with step size control for stiff ordinary differential equations. Numerische Mathematik, 1979, 33: 55-68 doi: 10.1007/BF01396495
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  502
  • HTML全文浏览量:  133
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-10
  • 录用日期:  2021-09-14
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2021-10-26

目录

    /

    返回文章
    返回